
Dynamic Translation as a System Service

Marc L. Corliss Vlad Petric E Christopher Lewis
Department of Computer and Information Science

University of Pennsylvania
{mcorliss,vladp,lewis}@cis.upenn.edu

Abstract
Dynamic translation is a well-known and powerful technique for
transforming programs as they run. Dynamic translators have many
uses including profiling, security assurance, dynamic optimization,
and bug patching. However, the utility of dynamic translation is
severely limited by a lack of integration with the system in which
it is used, instead, requiring individual users to initiate and program
the translator. As a result, translation is not transparent, cannot be
used to protect system-level security, and can only be programmed
by a single party (the user).

In this work, we propose integrating dynamic translation with
the operating system, providing dynamic translation as an operating
system service (DTSS). With DTSS, the OS dynamically translates
all applications according to translation rules provided by any en-
tity (with sufficient access rights) in the system. In addition, this
paper describes a number of challenges in implementing DTSS and
presents solutions to address them. Performance overhead poses the
greatest challenge, but code caching can dramatically reduce over-
head. That multiple parties may transform a single program is also
challenging. We describe how transformations may be composed
and how they are isolated from one another. DTSS has great utility
beyond traditional dynamic translation systems, but new implemen-
tation strategies are required.

1. Introduction
Dynamic translationis a technique for transforming programs as
they run. Many dynamic translation systems have been constructed
and shown to be efficient (introduce little overhead), flexible (can
be used for a variety of purposes), and useful (can be used to solve
problems more effectively than with other techniques) [6, 10, 17,
18, 22]. The main utility of dynamic translation comes from the fact
that it is performed at runtime, which has the obvious benefits of
supporting whole-program translation (including dynamically gen-
erated/loaded code) and allowing for program optimization based
on runtime program behavior. Because dynamic translators oper-
ate on the runtime (i.e., binary) representation of a program, they
are also independent of the languages or tools used to generate the
program. In summary, dynamic translation provides a single, well-
positioned facility for controlling, managing, or monitoring execut-
ing code. As such, dynamic translation is a perfect fit for a host of
uses, including profiling, security assurance, dynamic optimization,
and bug patching.

Although dynamic translation is obviously an important new
technique, the utility of existing translators is severely limited by a
lack of integration with the systems in which they are used. Cur-
rently, the user is responsible for initiating and programming the
translator. This approach is problematic because (i) bug-patching
translations should be transparent to all running programs and
(ii) security-related translations should not be voluntary. In addi-
tion, only a single entity can program a translator, but it is easy
to imagine, for example, a scenario in which the operating system
wants to patch a hardware bug, the system administrator wants to

detect and thwart malware, the user wants to perform profiling, and
the applications wants to isolate dynamically loaded modules to
protect itself from buggy third-party code. All these parties would
benefit from dynamic translation, but existing translators provide no
practical way to serve them all.

In this paper we explore the integration of dynamic translation
with the operating system to address the above limitations. We de-
scribe the architecture and interface for a dynamic translation oper-
ating system service (DTSS). Via DTSS, the operating system dy-
namically translates all application programs according to transla-
tion specifications (calledtransformations) provided by any entity
in the system. Naturally, application code may only transform itself,
users may only transform their own applications, and the OS may
transform any application in the system. Although the expectation is
that dynamic translation will be frequently used in a DTSS system,
translation can be disabled when performance is critical.

DTSS is a powerful addition to the operating system. It enables
simple implementations of logical OS extensions such as security
verifiers, malware detectors, or bug patchers. Because the OS man-
ages translation for the whole system, cross-application optimiza-
tions are enabled. For example, if two applications are translated in
the same way, the code they share (e.g., shared libraries) need only
be translated once. Most importantly, DTSS increases the overall
utility of dynamic translation. Operating systems and administrators
can leverage system-wide dynamic translation (e.g., for bug patch-
ing). They can also use translation to transparently enhance security
in potentially vulnerable applications. Finally, DTSS allows multi-
ple parties (e.g., user and OS) to simultaneously transform an appli-
cation.

Although DTSS is promising, its realization presents a num-
ber of challenges beyond those of traditional dynamic translation
systems. Adverse performance impact is a significant problem. Al-
though previous research [6, 10, 17, 18, 22] has shown that dynamic
translation systems have small overhead, this paper shows that ex-
isting techniques have intolerably high overhead in some contexts.
DTSS must also manage translations on behalf of multiple entities
with different privileges, presenting both semantic design and im-
plementation difficulties. Finally, DTSS must isolate the translations
of all parties, so that they may not observe or corrupt each other,
while keeping the performance impact at reasonable levels.

This work makes a number of contributions toward solving the
above challenges and designing an effective DTSS system. It qual-
itatively and quantitatively evaluates the limitations of existing dy-
namic translation systems. It presents an abstract DTSS architec-
ture and discusses some implementation issues. It motivates and
presents optimizations that allow DTSS to be more practical. Fi-
nally, it evaluates the performance implications of the architecture
and optimizations. In future work, we will implement DTSS within
the linux operating system and evaluate our implementation.

The outline for the remainder of this paper is as follows. Sec-
tion 2 gives a brief background on dynamic translation. Section 3
motivates widespread use of dynamic translation as a system ser-
vice. Section 4 presents the DTSS architecture and Section 5 dis-

cusses some DTSS implementation issues. Finally, Section 6 evalu-
ates the performance of many aspects of a DTSS system.

2. Dynamic Translation
This section gives a brief background on dynamic translation tech-
niques and discusses other system-wide dynamic translation pro-
posals.

2.1 Dynamic Translation Techniques

Dynamic translation techniques can be broken into two general cat-
egories:in-placetechniques andcode-cachetechniques. We discuss
both below.

In-place techniques.As the name suggests, in-place techniques
maintain the original layout of the program, and patch it locally.
Because it is costly to insert a code sequence in the middle of a pro-
gram, in-place techniques generally usetrampolining. The transla-
tor replaces one or more instructions with a jump to the appropri-
ate code sequence. When the code sequence finishes executing, it
jumps to the next instruction in the original program. DynInst [13]
is an example of an in-place dynamic translator.

Unfortunately, in-place modification limits the scope of possible
translations. While in-place translators can instrument applications
(instrumentation transformations), they cannot do more advanced
types of transformations such as ISA conversions (ISA transforma-
tions). Furthermore, the runtime overhead associated with the extra
control flow can be very high even if the amount of extra work is
small. In addition, in-place techniques transform the codeeagerly
rather thanlazily, meaning they translate all of the code at once
rather than when the code is first executed. Code that never gets ex-
ecuted is translated, which adds overhead to the total cost of trans-
lation. Because of these drawbacks, we use only code-cache trans-
lators, discussed below, in DTSS.

Code-cache techniques.Code-cache dynamic translators fully
reconstruct the program layout. They translate the dynamically-
executed parts of the program into a code cache, and execute them
from there, as opposed to the original binary image. Code-cache
techniques also operate lazily. When an untranslated block of code
is encountered, the application relinquishes control to the translator,
which builds the appropriate block of code, loads it into the code
cache, and returns control back to the application at the beginning
of the newly translated block.

Most code-cache techniques translate code at the granularity of
dynamic traces [6, 10, 17, 22] resulting in a translation unit that
encodes dynamic program behavior. Most code-cache translators
also link the traces within the code cache (i.e., transform trace exits
from jumps to the runtime system into jumps to other entries in the
code cache) to minimize transitions between the application and the
translator. Any additional functionality that is added to the trans-
lated code can often be inlined into the trace, making it easier to
optimize. With good code reuse, the cost of translation is amortized
over the total execution of the program,i.e., the cost of translation is
outweighed by the high performance of the translated code. Under
the right circumstances, performance can actually improve over that
of the untransformed program. Many code-cache dynamic transla-
tors exist today, including DELI [10], DynamoRIO [6], Strata [22],
Valgrind [18] (Valgrind compiles basic blocks rather than traces and
does not do any linking), and Pin [17].

2.2 System-wide dynamic translation

In addition to describing their dynamic translation infrastructure,
Desoli et al. [10] also suggest the utility of system-wide dynamic
translation. They propose placing the dynamic translator underneath
the OS (and all other software), rather than within the OS as a sys-
tem service. Unfortunately, the OS does not control translation un-
der this configuration. Therefore, the OS cannot leverage transla-
tion to enhance security or to patch bugs. Of course, DELI could

perform these transformations on its own, but operating systems are
generally better equipped to handle security and bug patching. In
addition, it is also much more difficult toselectivelytranslate appli-
cations when the translator is in a separate layer below the OS. The
OS naturally knows which applications require translation and how
they should be translated. In the DELI approach, it is difficult to
distinguish between various executing programs. Consequently, the
overall utility of system-wide dynamic translation is limited. In ad-
dition, since the translator resides below the OS, the translator must
manage hardware virtualization. In any case, the DELI project did
not implement, evaluate, or discuss in detail system-wide dynamic
translation.

3. Motivation
The virtues of dynamic translation have been discussed in a number
of papers [6, 10, 17, 18, 22]. This section does not reiterate them.
Instead, it motivates the use of dynamic translation as a system
service.

System-controlled translation. The most important virtue of
DTSS is that the operating system controls translation. Thus, the
OS can apply its own transformations on any program and provide
many important services to all applications that require them. For
example, one potential use for DTSS is to perform bug patching to
compensate for chip design errors (e.g., the infamous Pentium fdiv
bug [5]). In this case, the OS adds a transformation to replace the
faulty instruction or instruction sequence with a working sequence.
With system-controlled translation, bug patching is transparent to
the user.

Security hardening is another important application for system-
controlled translation. There are a number of transformation tech-
niques that can help prevent buffer overflow and format strings at-
tacks [4, 7, 8, 9, 11, 16, 23]. The problem with the existing dynamic
translators is that they require users to decide which applications
should be security-hardened. Alternatively, with DTSS, it is the sys-
tem (or the system administrator) who makes the decision. For ex-
ample, the administrator could set system-wide policies requiring
all application running as root or connected to the network to be
buffer-overflow protected.

A third potential application of system-controlled translation is
supporting legacy code. In the well-publicized Apple shift from
PowerPC to x86 [3], Apple is using dynamic translation (i.e.,
Rosetta) to support legacy programs. We leave this application of
DTSS for future work, as our current proposal does not support ISA
transformations.

Hardware abstraction. DTSS provides a mechanism for abstract-
ing aspects of the underlying hardware. For instance, DTSS can
provide fine-grained distributed shared memory (e.g., Shasta [21])
without user or application support. Another use of DTSS is as an
address translator. For instance, extensible applications often load
multiple modules within the same address space. These modules
may share data with one another and DTSS can provide address
translation to facilitate this sharing.

In addition, many recent processor enhancements ([15, 20, 27])
necessitate profiling. Developer profiling is in many cases inade-
quate as it is likely performed on a machine with slightly different
micro-architectural characteristics and has limited coverage. With
DTSS, the operating system can profile applications, transparently
and on-the-fly, overcoming these limitations.

Extensibility. An important virtue of DTSS is that developers can
implement services on top of it, leveraging DTSS to implement
features not provided by the OS. For example, consider dynamic
anti-virus or anti-malware detection. The developer simply defines
transformations that monitor system calls in search of anomalous
behavior. Similarly, DTSS could be used to dramatically simplify
the implementation of dynamic software updating [12]. A complex,
tedious, and machine-specific aspect of performing dynamic soft-

Operating System

(Global)
Translation
Manager

Process P1

Translated
CodeP1

Translator

Process P2

Process P3

Translated
CodeP3

Translator

(translation disabled)

Figure 1. A diagram of the DTSS system architecture.

ware updates arises from transforming live program binaries. With
DTSS, all of this aspect of the problem is shifted to the system ser-
vice.

Optimization opportunities. Another motivation for DTSS is that
it provides opportunities for optimizing translated code. One im-
portant optimization with dynamic translation is caching the trans-
lated code. However, with conventional dynamic translators, trans-
lated code cannot be shared across multiple users. In contrast, with
DTSS, users can share dynamically-linked library code as well as
whole programs, since translation is managed by a trusted entity
(i.e., OS). As shown in Section 6, caching significantly improves
the performance, especially for short-running programs with poor
code reuse.

There are other optimization opportunities as well in DTSS. For
instance, DTSS makes it possible to inline a customized version of
certain system calls [19]. DTSS systems can also profile applica-
tions and feed this information back to the dynamic translator in
order to further optimize translation. Per-application dynamic trans-
lators could also perform this optimization, however, with DTSS it
can be implemented across multiple users.

Centralized transformations. Another virtue of DTSS systems is
that they have a centralized repository for commonly-used transfor-
mations. These transformations are accessible by users or applica-
tions on request. For example, many extensible applications require
fault isolation [26] to prevent untrusted code from writing or jump-
ing to arbitrary regions of memory. In DTSS, the application can
request fault isolation via a system call for a certain region of code
(i.e., the untrusted code) without needing to build a transformation.
Centralized transformations have an additional benefit: changes to
them are localized to one place in the system. This benefit is es-
pecially important for fast-changing areas such as security. Instru-
mentation transformations designed to enhance security, may need
to adapt as new attacks are discovered. With centralized security
transformations, if new security vulnerabilities are announced, only
one set of transformations needs to be updated.

4. Architecture
This section describes the DTSS architecture. First, it shows the
basic design, then it looks at the DTSS system components, and
finally, it discusses the API for programming DTSS.

4.1 Overview

In DTSS, translation is integrated within the operating system and
provided as a service to users. DTSS exports an API through which
users can program the translator to transform programs on their be-
half, in arbitrary ways. Moreover, multiple parties can transform a
single application in DTSS. For instance, a user and the OS can si-
multaneously transform a single application. The DTSS architecture
ensures that all transformations are correctly applied to the applica-
tion. At the same time, it prevents less-privileged transformations
(e.g., those submitted by a user) from hijacking higher-privileged
transformations (e.g., those submitted by the OS).

Local Translation Manager

Transformation
1

(least privileged)
...Transformation

2

Transformation
n

(most privileged)

Trace 1

Trace
Request

Output
Trace

Tr
ac

e 0
(in

pu
t t

rac
e)

Tr
ac

e 1

Trace 2

Tr
ac

e n
-1

Trace n

(output trace)

Figure 2. DTSS Translator.

Transforming programs. The unit of translation in DTSS is a trace.
At runtime the DTSS translator generates traces for all executed
code. Trace construction is not programmable by DTSS users. How-
ever, DTSS users can transform these traces in arbitrary ways. A
transformationis effectively, a C program with DTSS API support,
which takes as input a trace and outputs a newly transformed trace.
DTSS supports instrumentation transformations. In future work, we
will explore support for ISA transformations.

In this work, we only consider transformations on user-level ap-
plications. As future work, we will investigate dynamically translat-
ing some of the extensible components of the operating system such
as device drivers. If device drivers, which run in kernel mode, con-
tain bugs they can crash the entire system. In the future, we will ex-
plore fault isolating them using techniques such as those employed
in Nooks [25].

DTSS users.In DTSS, multiple parties (four in total) can define
transformations for the same application. Clearly, the user is one
party. The application, itself, can also define a transformation. For
instance, an extensible application can fault isolate untrusted code
on its own without user support. An administrator can also define
a transformation. An administrator might define a security transfor-
mation to be applied to certain applications (e.g., webserver soft-
ware). Finally, an OS can also add transformations. An OS might
add a transformation to patch a hardware bug. Both an administra-
tor and an OS can define a transformation that is applied across all
applications. For instance, an administrator might define a profil-
ing transformation that is applied to all applications running on the
system.

Composition. When multiple transformations are defined for the
same application, transformations arecomposedas follows. Trans-
formations submitted by various parties areranked in strict order,
based on the privilege level of the party that submitted the trans-
formation. The OS is the highest privileged party, followed by the
administrator, followed by the user, followed by the application.
Higher-privileged transformations, such as those submitted by the
OS, are applied after lower-privileged transformations, such as those
submitted by the user. Otherwise, a user could thwart the operating
system by submitting a transformation to undo an OS transforma-
tion. Higher-privileged transformations are also applied to lower-
privileged transformation code. This requirement prevents users
from circumventing OS transformations by placing the offending
code in a transformation.

4.2 System Components

Figure 1 shows a diagram of the DTSS system architecture. At
the highest level there are two main components: thetranslation
managerand aper-application translator(although the translator
can be broken-down further into finer components).

Translation manager. In the DTSS architecture, a privileged trans-
lation manager (sometimes called the global translation manager)

Trace
Constructor

Transformation
Director

Helper Routine Verifier

Code Cache
Builder

Trace
Request

Input
Trace

Output
Trace

O
K

?

H
el

pe
r

Ro
ut

in
es

Figure 3. DTSS local translation manager.

within the operating system oversees all translation. Essentially, the
translation manager is the component that provides dynamic trans-
lation as a system service. The translation manager sets up transla-
tion for any application that needs it (e.g., process P1 in Figure 1).
The translation manager is also responsible for transferring control
from a process to its translator (and back) whenever the process re-
quests an untranslated code cache entry. The translation manager
also needs to be notified at a call to fork and exec1. If a translated
process calls fork or exec, the new process must also be translated
using the exact same transformations.

In addition, the translation manager has one other responsibility:
protecting the translated code from corruption by the application.
For instance, a malicious application could corrupt the code cache.
To protect the translated code, the translation manager sets all code
cache pages to execute-only. Applications could also attempt to
change the permissions of these pages via the mprotect system call.
Therefore, the translation manager must also observe all mprotect
calls and verify that all requests are for pages that do not contain
translated code.

Per-application translator. In a DTSS architecture, translation is
not performed directly by the translation manager, because a mali-
cious user-defined transformation could hijack the translation man-
ager, and thus, the OS. Instead, translation is done in a separate pro-
cess running at the privilege level of the application. A translator is
created for each application in which translation is enabled. Unlike
other dynamic translators [6, 10, 17, 18, 22], the translation mech-
anism and the application are isolated from one another. This sep-
aration prevents the application from intentionally or accidentally
corrupting translation, some of which may have been defined by a
privileged party (e.g., OS). The translator and application may run in
separate processes or can even be isolated within the same address
space (see the next section), depending on the implementation.

Figure 2 shows a closer view of the per-application translator
mechanism. The translator, itself, is composed of multiple compo-
nents. First, the translator containstransformations, one for each
submitted transformation. For instance, if a user submitted a secu-
rity transformation, one component would be responsible for per-
forming this transformation. In addition, the translator contains a
local translation manager, which manages translation for that par-
ticular application. Less privileged transformations should not be
able to corrupt higher privileged transformations. As a result, each
must be separated from one another as well as from the local trans-
lation manager.

Transformations. A transformation takes as input a trace and out-
puts the corresponding transformed trace. As depicted in Figure 2,
multiple transformations are applied to application traces in order
of ranking (discussed above). The input trace to transformationx
is the output trace from transformationx − 1. The implication of
this configuration is that the later transformations observe the trans-

1 Although this paper is mainly OS independent, it assumes unix-based
system calls (e.g., fork and exec).

// Called before untrusted memory writes.
void mfi(unsigned int addr) {

if (addr < segment start addr || addr >= segment end addr) {
fprintf(stderr, “Error: write to address outside of allotted segment.”);
exit(-1);

}
}

// Called whenever a trace is translated
void instrument trace(trace t trace) {

int i;
// Loop through trace instructions
for (i = 0; i < trace.inst num; i++) {

// Is this instruction an untrusted store?
if (is mem write(trace.inst list[i]) &&

get pc(trace.inst list[i]) >= untrusted start pc &&
get pc(trace.inst list[i]) < untrusted end pc) {

// Add predicate and body calls
add analysis(&mfi, INSTRUMENT BEFORE,

ARGTYPE ADDR, INST MEM ADDR);
}

}
}

// Called once during initialization
void transform() {

// Register callback function instrument trace to be called
// whenever a new trace is translated.
reg callback trace(&instrument trace);
// Disallow library calls to the translator while executing
// untrusted code.
disallow transformation calls(untrusted start pc, untrusted end pc);

}

Figure 4. Instrumenting a program with memory fault isolation.

lated code from earlier transformations, but not vice versa. For this
reason, the least privileged transformations should be applied first,
while the most privileged should be applied last.

Transformations run at the privilege level of the party that sub-
mitted the transformation, allowing transformations to, for example,
manipulate files managed by the submitter. OS and administrator
transformations run at the root privilege level, while user transfor-
mations run at that particular user’s privilege level. The only excep-
tion to this rule are transformations submitted by the application.
The application’s transformations should not be able to hijack the
user who is running them. These transformations run at the privi-
lege level of the user running the application, however, they are not
allowed to make any system calls. Any system call that is made is
caught by the global translation manager.

Transformations often insert function calls into the transformed
program, allowing for the insertion of significant computation with-
out unduly impacting the program’s memory footprint. These helper
functions are treated differently than application code in order to
reduce transitions to the local translation manager. First, calls to
helper routines are not treated as trace exit points unlike other pro-
gram calls. As a result, the output of a transformation is generally
still a valid trace, but we must ensure the helper routines are already
translated. To achieve this, helper routines themselves are statically
translated (by transformations with higher privilege) at load time
before they are first called. Since runtime information is unavail-
able at this point, the trace constructor simply generates a new trace
for each basic block and links them together. In order to ensure that
helper routines do not transfer control to untranslated code, all con-
trol flow must be statically apparent (enabling complete linking).
As a result, indirect jumps and function calls (the destination of re-
turns are not statically apparent in general) are not allowed in helper
routines.

Local translation manager. The local translation manager super-
vises translation for one particular application. The components of
the local translation manager (Figure 3) do not need to be isolated
from one another since each is a trusted part of the translation in-
frastructure.

Trace transformations are facilitated by thetransformation di-
rector. The transformation director requests traces from thetrace
constructor. As is apparent in Figures 2 and 3, the transformation
director then takes each trace and passes it to the first transforma-
tion component, which performs its transformation. Next, the trans-
formation director takes this newly transformed trace and passes it
to the second transformation component, and so forth. After the last
transformation, the transformation director gives the final trace to
thecode cache builder. The code cache builder instructs the global
translation manager to insert the trace into the translated applica-
tion’s code cache (linking as necessary).

Thehelper routine verifierconfirms that all helper routines, sup-
plied by each transformation, does not subvert the translator. Basi-
cally, the helper routine verifier inspects all control flow within a
helper routine. Control flow within these routines could potentially
circumvent other higher-privileged helper routines. The helper rou-
tine verifier first checks that all control flow within a helper routine
is statically apparent. The verifier then checks that all control flow
branches to an appropriate target.

4.3 API

The DTSS application programming interface (API) is mainly bor-
rowed from previous translators such as Pin [17] and Atom [24]. To
program DTSS, a user writes a C program, which when compiled is
linked with the DTSS library. Within the program, the DTSS user
defines atransform function, where the user can register callback
functions to be triggered on particular events,e.g., any time a new
trace is translated. Applications can also directly program DTSS.
Such applications are compiled using a new library, which allows
them to call into the global translation manager at runtime. Appli-
cations can either pass a pointer to transformation code contained
within the application’s address space or it can specify a separate
file containing the code.

Figure 4 shows an example (instrumenting) transformation. The
code in Figure 4 fault isolates [26] some untrusted region of code
(e.g., a module downloaded from the Internet) in an extensible ap-
plication. First, a functioninstrument trace is registered, which is
called whenever a new trace is translated.instrument trace inspects
each translated trace, looking for memory writes. A function call
is inserted before (henceINSTRUMENT BEFORE) each write. The
call is to a function,mfi , that triggers an error on all writes out-
side of some pre-defined segment. Unlike most dynamic translation
APIs, DTSS allows applications to add transformation rules. To dis-
able parts of the application (in this case the untrusted module) from
altering transformation rules, a more privileged entity (e.g., user, ad-
minister, OS) can calldisallow transformation calls .

5. Implementation Issues
Although we save implementing DTSS for future work, this section
describes two important implementation issues: caching translated
code and isolating transformations.

5.1 Caching and Reusing Translated Code

Although a number of papers [6, 10, 17, 18, 22] have shown that
dynamic translation has low overhead, these papers have ignored a
large class of applications. They have evaluated only long-running
applications, which have good code reuse. However, as is shown
in the next section, the overhead of translation on short-running
programs is much higher, because execution time is dominated by
the time it takes to warm up the code cache. Of course, users are less
sensitive to overhead on a short-running programs; but this overhead
can harm interactive programs. For example, if the performance of
the ls command goes from a few milliseconds to a few seconds,
DTSS becomes far less useful.

The expectation in DTSS is that all (or nearly all) programs are
translated. For this reason, the overhead of translation on short-
running programs in DTSS is important. Fortunately, caching and

reusing translated code significantly improves the performance of
dynamic translation for short-running programs. Moreover, the
DTSS architecture enables caching across users, since translation
is managed by the OS. Of course, translated code cannot be shared
when using different transformations. A copy of the translated code
needs to be cached for each distinct set of transformations. However,
in practice only a few distinct sets of transformations are used for
any single application. In addition, DTSS does not allow translated
code to be cached and reused when transformations are dynamically
submitted.

5.2 Isolating Transformations

As discussed in the Section 4, many of the DTSS components need
to be isolated from one another (see the previous section). For ex-
ample, the translator must be isolated from the (untrusted) applica-
tion and transformation code. Below, two isolation techniques are
described.

Straightforward approach: separate address spaces.The natural
approach to providing isolation is to put the application, the local
translation manager, and each transformation in separate processes.
In order to minimize scheduling latencies between these processes,
the process manager treats them all as one scheduling unit. Com-
munication from these separate processes occurs through the OS.
Components communicate with one another via system calls, which
are serviced by the global translation manager. For instance, a jump
to untranslated code in an application is implemented as a trap to
the OS. The translation manager is then notified and immediately
wakes up the local translation manager. The local translation man-
ager executes a system call when it needs a transformation process
to translate some trace. The global translation manager then imme-
diately wakes up the appropriate transformation process. When the
transformation process is done, it also makes a system call to notify
the global translation manager.

The virtue of this implementation is that isolation is ensured
through conventional address space protection. However, process
crossings (e.g., when control is transferred from the main process
to the local translation manager in order to add a new trace to the
code cache) become very expensive. The performance of applica-
tions that require frequent process crossing will suffer dramatically.
Fortunately, most applications do not require frequent crossings. As
we will see in Section 6, the additional overhead of isolation via
separate processes is surprisingly small.

Optimized approach: single address space.In some contexts, ap-
plications may require frequent transitions to and from the transla-
tor. To this end, the second approach houses the application and the
translator (including the transformations) in a single address space.
This optimization eliminates context switches and reduces the num-
ber of processes in the system.

To isolate the various components from one another, DTSS
leverages hardware support. Protection is achieved via virtual mem-
ory segmentation, which exists in many of today’s processors (e.g.,
x86, PowerPC, and PA-RISC) [14]. Virtual memory segmentation
provides a level of indirection in converting addresses to physi-
cal addresses. In a segmentation processor, instructions reference
memory via effective addresses. Effective addresses are then con-
verted to virtual addresses using segments, which are located either
in registers or memory. These virtual addresses are then converted
to physical addresses. By modifying the segments, portions of code
are allowed and disallowed from referencing particular regions of
memory. DTSS requires user-level updates of the segments (avail-
able only in PA-RISC). Essentially, the translator can update the
segments to manipulate which components can reference which
virtual pages. In addition to user-level updates of the segments,
updates should be statically apparent. Otherwise malicious applica-
tion or transformations could corrupt the segments and thus higher
privileged transformations.

Input Benchmark Baseline Instructions Traces Instructions Traces Transitions
Type Runtime Executed Executed Translated Translated to the

(seconds) (billions) (billions) Translator

Test

bzip2 10.97 18.32 1.86 23,727 (1294.7) 1743 (95.1) 2569 (140.2)
gcc 1.35 1.48 .17 366,981 (247,692.7) 26,610 (17,960.3) 35,998 (24,296.7)
mcf .36 .26 .03 28,143 (108,002.3) 1699 (6520.1) 2571 (9866.5)
twolf .52 .37 .03 63,162 (170,521.3) 4651 (12,556.5) 6140 (16,576.4)

Train

bzip2 88.67 105.70 10.29 24,455 (231.4) 1804 (17.1) 2646 (25.0)
gcc 3.00 3.36 .38 358,267 (106,656.3) 25,856 (7697.3) 35,089 (10,446.0)
mcf 39.05 15.51 2.31 28,267 (1822.9) 1714 (110.5) 2605 (168.0)
twolf 21.51 18.80 2.09 66,477 (3536.0) 4920 (261.7) 6461 (343.7)

Ref

bzip2 140.31 147.21 14.95 24,211 (164.5) 1789 (12.1) 2625 (17.8)
gcc 32.69 20.94 2.51 374,066 (17,859.0) 27,011 (1289.6) 36,633 (1749.0)
mcf 362.50 108.87 17.58 28,245 (259.4) 1713 (15.7) 2604 (23.9)
twolf 757.29 510.47 56.32 66,174 (129.6) 4911 (9.6) 6444 (12.6)

Table 1. Benchmark characteristics. The values in parentheses are normalized to instructions executed times109.

6. Evaluation
This section presents performance characteristics of a DTSS system.
It shows that the overhead of dynamic translation is low in many
scenarios, confirming previous studies [6, 10, 17, 18, 22]. This
section also shows that in some contexts the overhead is intolerably
high and it demonstrates that this overhead can be significantly
reduced via caching. Finally, this section explores the impact of
dynamic translation on system throughput and latency in server
applications.

6.1 Methodology

Dynamic translator. In this work, we use the Pin toolset [17] as
our dynamic translator in DTSS. To define a transformation in Pin,
a user writes a program in C++ called a Pintool (which is effectively
a transformation). Pin is a single-program translator, which runs in
the same address space as the process.

To model caching, we run the program back-to-back in Pin (in
the same process). The second run represents the cached version.
To model a separate process implementation (see the previous sec-
tion), we run Pin normally, conservatively adding the overhead from
switching between multiple processes. To obtain this overhead we
multiply the number of necessary context switches (computed from
Pin statistics) by the context switch overhead. For the context switch
overhead, we use a conservative approximation of 50,000 cycles.
Our default system uses caching and the separate process imple-
mentation.

Machine and operating system.We ran our experiments on a Intel
Xeon Pentium IV running at 2 GHz with 512 KB L2 cache. The
operating system is Linux, kernel version 2.6.8.

Benchmarks. To evaluate translation overhead (Sections 6.2 and
6.3) we use a subset of the SPEC2000 integer benchmark suite. We
use all three data input sizes: test, train, and ref. Table 1 shows the
benchmarks as well as some important characteristics such as the
number of traces translated. The baseline runtime (in seconds) is the
execution time of the benchmark running natively. The other char-
acteristics were extracted from a run of Pin without any additional
instrumentation.

To evaluate system throughput and latency (Section 6.4) we
use two webserver benchmarks, based on Apache 2.0.54 [1] and
Postgres 7.4 [2].

6.2 Translation overhead

Figure 5 shows the overhead of running Pin with no transforma-
tion for the SPEC2000 benchmarks. Each bar represents the ex-
ecution time of Pin versus the native execution time running the
same benchmark and the same input. In most cases, the overhead is
quite low, with overheads less than 15%. No slowdown was greater
than 3.1. Because Pin constructs highly efficient traces, the cost of

0

1

2

3

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e

w
/o

 p
in

)
Test Train Ref

bzip2 gcc mcf twolf

Figure 5. Overhead of dynamic translation using Pin.

translation is amortized by the higher performance of the generated
code. Forbzip2, mcf, andtwolf there is almost no overhead.gcchas
a higher overhead than the other three benchmarks due primarily to
poor code reuse. From Table 1, the ratio of traces (as well as instruc-
tions) translated per instructions executed is higher forgcc than for
the other three benchmarks. As the input size increases ongcc, the
ratio decreases and as a result the overhead drops significantly.

Transformations. Figure 6 demonstrates the utility of dynamic
translation, showing the performance of Pin for various transforma-
tions. The first set of bars in Figure 6 plots the performance of Pin
with no transformation (for comparison purposes). This is followed
by a bug patching transformation (bp) to prevent Intel Pentium fdiv
bug [5]. The transformation represented by the third set of bars pre-
vents stack smashing attacks by using a shadow stack (ss) [4, 7, 11]
to verify that return addresses are not corrupted. The transformation
represented by the fourth set of bars performs memory fault iso-
lation (mfi) [26] for memory writes only (as shown in Section 4).
The next set of bars shows a transformation that implements a de-
bugging watchpoint (db). Memory writes to a particular address are
monitored. The next set of bars shows a transformation performing
profiling, counting how often each basic block is executed (bb). The
final set of bars (all) represents the composition of all the transfor-
mations.

Figure 6 shows that DTSS has many uses. Although overheads
get high for some transformations and some benchmarks, it is im-
portant to remember that, in these cases, significantly more work is
being done. When performance is critical, DTSS users can disable
the more expensive transformations (e.g., bb).

6.3 Sensitivity Analysis

Here we examine the impact of two aspects of DTSS implementa-
tion: caching and reusing translated code, and hardware support for
isolating transformations.

Caching and reusing translated code.The previous graphs have
all leveraged caching,i.e., the code cache is filled at load time with
traces generated from a previous run. Figure 7 shows the impact

0

10

20

30

40

50
ex

ec
ut

io
n

tim
e

(n
or

m
. t

o
ba

se
lin

e
w

/o
 p

in
)

Test Train Ref

57 51 78 67

none none none nonebp bp bp bpss ss ss ssmfi mfi mfi mfidb db db dbbb bb bb bball all all all
bzip2 gcc mcf twolf

Figure 6. Overhead of various transformations in Pin.

0

25

50

75

100

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e

w
/o

 p
in

)

Test Train UncachedRef

29
4

15
7

none none none noneall all all all
bzip2 gcc mcf twolf

Figure 7. Performance impact due to caching.

of caching with no transformation and with all the transformations
(noneandall from Figure 6). As is evident in Figure 7, caching is
critical in DTSS. Without caching, benchmarks with shorter exe-
cution times (i.e., test inputs) tend to have much higher overheads.
For short-running programs there is less opportunity to amortize the
cost of translation with the efficiently generated code. Although the
performance of short-running programs is less critical than long-
running programs, in some contexts short-running programs are
performance sensitive. For example, we have observed the running
time of ls degrade from a few milliseconds (without Pin) to a few
seconds (with Pin). Furthermore, in DTSS the expectation is that
translation is always on. Therefore, optimizing the performance for
short-running programs is important.

Fortunately, caching significantly improves performance, espe-
cially for short-running programs. With no transformation, caching
reduces the overhead by as much as a factor of 12 (e.g., gcc-test). On
all, caching reduces the overhead by as much as a factor of 4 (e.g.,
twolf-test). Notice that the gap between the cached and uncached
bars in Figure 7 shrinks as the input size increases. However, for
programs with larger code sizes (e.g., gcc and twolf), caching can
still greatly improve performance even for theref inputs.

Hardware support for isolation. In DTSS, since some transfor-
mations are submitted by unprivileged parties (e.g., a user), trans-
formations are isolated from one another as well as from the local
translation manager. Transformation are either housed within their
own process or are isolated using hardware support. Thus far, we
have assumed a single address space approach. Surprisingly, in our
experiments (not shown), we find that the additional overhead of
multi-process isolating is minimal. Transitions to and from the local
translation manager are relatively rare in our benchmarks, and as a
result the cost in additional context switches is small. With caching
the difference in overhead is only a few percent. Without caching
the cost is slightly higher, but still rarely more than 5% for most
benchmarks. Therefore, efficient isolation techniques are not criti-
cal.

6.4 Server Throughput and Latency

Thus far, we have examined translation overhead only on single-
threaded interactive benchmarks, but DTSS is also desirable for
multi-threaded server applications. We investigate how Pin affects

0.00

0.25

0.50

0.75

1.00

th
ro

ug
hp

ut
(n

or
m

. t
o

ba
se

lin
e

w
/o

 p
in

)

no transformation

apache
static

apache
dynamic

postgres

0

1

2

3

4

5

la
te

nc
y

(n
or

m
. t

o
ba

se
lin

e
w

/o
 p

in
)

+stack protection

apache
static

apache
dynamic

postgres

Figure 8. Impact of translation on throughput and latency for
Apache and Postgres.

the average throughput and latencies for three such workloads. The
first two are based on the Apache webserver. Apache is configured
to run in pre-fork mode and to serve either a static html file or a
simple PHP script. The third benchmark is based on the Postgres
database. Postgres is configured with a 100K-entry database. The
benchmark performs three-way join queries with randomized in-
puts. For all three benchmarks the number of clients was determined
by finding the saturation point for the baseline configuration (with-
out Pin).

Figure 8 shows the degradation in average throughput and la-
tency when using Pin. For both webserver configurations, Pin with
no transformation degrades throughput by a factor of two. The main
cause is the overhead of translation. While server workloads can
hide these overheads through warm-up, unfortunately, Apache pe-
riodically kills and respawns worker threads, reducing this benefit.
Tweaking this behavior will result in lower overhead. Finally, the
database benchmark incurs a throughput reduction by a factor of
2.5. The reason is, however,not the overhead of translation (as there
is no killing/respawning effect), but instead a very high number of
indirect branches that Pin cannot handle efficiently, causing a sig-
nificant increase in the dynamic instruction count.

In all three server benchmarks, adding the shadow stack transfor-
mation reduces the throughput by another factor of two. This result
is similar to the slowdowns observed in Figure 6.

Figure 8 demonstrates that existing dynamic translation tech-
niques are inadequate for server workloads where processes are of-
ten killed and respawned and applications frequently execute indi-
rect jumps. Caching can help mitigate this cost, but challenges still
remain in lowering this overhead.

7. Conclusions
We have proposed providing dynamic translation as a system ser-
vice (DTSS) managed by the operating system. We have shown
DTSS to have considerable value versus user-managed dynamic
translation, but its implementation and performance implications
present a number of challenges and unknowns. We have presented a
DTSS architecture that supports the specification of transformations
by multiple parties of varying privileges, and we have described
implementation alternatives to achieve transformation isolation. In

our experimental evaluation, we have found that short running pro-
grams can suffer from intolerable overhead, but cross-invocation
code caching assuages the problem. In addition, we found that
server applications perform slightly worse in DTSS than interactive
workloads, due to more frequent transitions to the transformation
manager. Nevertheless, we conclude that DTSS is functionally very
useful and practically promising when code caching is performed.
In future work, we will implement DTSS within the linux operating
system.

Acknowledgments
We thank the anonymous reviewers for their suggestions. This work
was funded in part by NSF grant CCR-0311199. E Christopher
Lewis is supported by NSF Career Award CCF-0347290.

References
[1] Apache http server project. http://httpd.apache.org.

[2] Postgresql database server. http://www.postgresql.org.

[3] Apple Corporation. Universal Binary Programming Guidelines,
Second Edition: Rosetta. http://developer.apple.com/documentation/
MacOSX/Conceptual/universalbinary/universalbinary execa/
chapter7 section1.html.

[4] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense
against stack smashing attacks. InProc. of USENIX Annual Technical
Conference, Jun. 2000.

[5] M. Blum and H. Wasserman. Reflections on the pentium division bug.
IEEE Transactions on Computers, 45(4):385–393, 1996.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure
for adaptive dynamic optimization. InProc. of Intl. Symp. on Code
Generation and Optimization, pages 265–275, Mar. 2003.

[7] T.-C. Chiueh and F.-H. Hsu. RAD: A compile-time solution to buffer
overflow attacks. InProc. of 21st Intl. Conf. on Distributed Computing
Systems, Apr. 2001.

[8] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard:
Protecting pointers from buffer overflow vulnerabilities. InProc.
of 12th USENIX Security Symposium, pages 91–104, Aug. 2003.

[9] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive
detection and prevention buffer overflow attacks. InProc. of 7th
USENIX Security Conference, pages 63–78, Jan. 1998.

[10] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A. Fisher.
Deli: a new run-time control point. InProc. of 35th Intl. Symp. on
Microarchitecture, pages 257–268, Nov. 2002.

[11] M. Frantzen and M. Shuey. StackGhost: Hardware facilitated stack
protection. InProc. of 10th USENIX Security Symposium, pages
55–66, Aug. 2001.

[12] M. Hicks and S. M. Nettles. Dynamic software updating.ACM Trans.
on Programming Languages and Systems, Sep. 2005.

[13] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program
instrumentation for scalable performance tools. InProc. of Scalable
High Performance Computing Conf., pages 841–850, May 1994.

[14] B. Jacob and T. Mudge. Virtual memory in contemporary micropro-
cessors.IEEE Micro, 18(4):60–75, 1998.

[15] I. Kim and M. H. Lipasti. Macro-op scheduling: Relaxing scheduling
loop constraints. InMICRO 36: Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture, page 277,
Washington, DC, USA, 2003. IEEE Computer Society.

[16] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via
program shepherding. InProc. of 11th USENIX Security Symposium,
pages 191–206, Aug. 2002.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. InProc. of Conf.
on Programming Language Design and Implementation, Jun. 2005.

[18] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. InProc. of Workshop on Runtime Verification, Jul. 2003.

[19] C. Pu, H. Massalin, and J. Ioannidis. The synthesis kernel.Computing
Systems, 1(1):11–32, 1988.

[20] A. Roth and G. S. Sohi. Speculative data-driven multithreading. In
Proc. of 7th Intl. Symp. on High-Performance Computer Architecture,
Jan. 2001.

[21] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A low
overhead, software-only approach for supporting fine-grain shared
memory. InProceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating
Systems, Oct. 1996.

[22] K. Scott and J. Davidson. Strata: A software dynamic translation
infrastructure. InProc. of Workshop on Binary Translation, Jul. 2001.

[23] K. Scott and J. Davidson. Safe virtual execution using software
dynamic translation. InProc. of Annual Computer Security Application
Conf., pages 209–218, Dec. 2002.

[24] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. InProc. of 1994 ACM SIGPLAN
Conf. on Programming Language Design and Implementation, Jun.
1994.

[25] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability
of commodity operating systems. InProc. of 19th ACM Symp. on
Operating Systems Principles, Oct. 2003.

[26] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. InProc. of 14th ACM Symp. on
Operating Systems Principles, Dec. 1993.

[27] C. Zilles and G. Sohi. Execution-based prediction using speculative
slices. InISCA ’01: Proceedings of the 28th annual international
symposium on Computer architecture, pages 2–13, New York, NY,
USA, 2001. ACM Press.

