
Using DISE to Protect Return Addresses from Attack∗

Marc L. Corliss E Christopher Lewis Amir Roth

Department of Computer & Information Science
University of Pennsylvania

Philadelphia, PA 19104
{mcorliss,lewis,amir}@cis.upenn.edu

Abstract

Stack-smashing by buffer overflow is a common
tactic used by viruses and worms to crash or hi-
jack systems. Exploiting a bounds-unchecked copy
into a stack buffer, an attacker can—by supplying
a specially-crafted and unexpectedly long input—
overwrite a stored return address and trigger the
execution of code of her choosing. In this paper,
we propose to protect code from this common form
of attack using dynamic instruction stream editing
(DISE), a previously proposed hardware mecha-
nism that implements binary rewriting in a trans-
parent, efficient, and convenient way by rewriting
the dynamic instruction stream rather than the static
executable. Simply, we define productions (rewrit-
ing rules) that instrument program calls and returns
to maintain and verify a “shadow” stack of return
addresses in a protected region of memory. When
invalid return addresses are detected, the applica-
tion is terminated.

The DISE implementation resembles previous
software schemes like StackGuard and the Re-
turn Address Defender (RAD), but it can operate
without source code and in dynamically-linked li-
braries and dynamically-generated code. It also has
natural facilities for protecting the shadow stack,
which provides little security if it itself is vul-
nerable. Finally, unlike software instrumentation,
DISE checks—which are inserted by the processor
at runtime—cannot be bypassed or subverted.

∗The work was funded in part by NSF grant CCR-03-
11199. Amir Roth is supported by NSF CAREER Award
CCR-0238203, and E Lewis is supported by NSF CAREER
Award CCF-0347290.

1 Introduction

Buffer-overflow security vulnerabilities represent
the largest share of CERT advisories over the past
six years [15]. The simplest and most common ex-
ploit overflows a stack-resident buffer for the pur-
pose of overwriting the current function’s return ad-
dress and allowing the attacker to redirect execu-
tion to arbitrary code at the protection level of the
compromised program. This code may be supplied
by the attacker via the stack-resident buffer (stack
smashing[1]) or already exist in a library (return-
to-libc or more generallyarc injection[15]).

Several techniques have been proposed to pre-
vent these attacks by protecting return addresses [2,
4, 9, 11]. In this paper, we propose and
evaluate a new hardware-assisted implementa-
tion that usesdynamic instruction stream edit-
ing (DISE) [6]. DISE is a one-to-many instruc-
tion macro-expander; it resembles the CISC-to-
RISC decoder present in IA-32 processors in struc-
ture and operation [10, 12], but has programmable
rewriting rules. DISE inspects every fetched in-
struction and potentially rewrites it, feeding the ex-
ecution engine a modified instruction stream. Al-
though the present work uses DISE to detect at-
tacks, DISE is a general tool for customizing ap-
plication execution and has been used for profil-
ing [5], memory safety checking [6], code decom-
pression [7], and debugging [8]. These customiza-
tions would otherwise be implemented statically
via a compiler or binary rewriter or dynamically via
ad hochardware. DISE is a hybrid that combines
the flexibility of binary rewriting and the trans-

parency and performance of custom hardware.
We use DISE to protect return addresses by

defining productions (rewrite rules) that instru-
ment call and return instructions to maintain a
“shadow” stack of return addresses in a protected
region of memory. The return instrumentation also
verifies that the intended return address is iden-
tical to the address stored in the shadow stack
by the corresponding call. If it is not, the pro-
gram is terminated. Although logically similar to
other schemes, a DISE implementation has sev-
eral advantages. (i) It is transparent; programs for
which source code is unavailable can be protected,
including shared/dynamically-linked libraries and
dynamically-generated code. (ii) It is not sub-
vertible; the hardware inserts the instrumentation
and ensures that it is not bypassed. (iii) It is
efficient; there is no static rewriting overhead
or instruction memory footprint. (iv) It has a
conceptually-simple, concise, declarative interface;
DISE “patches” require only a few lines of code,
may be easily extended to guard against new forms
of attacks, and are less vulnerable to complexity-
related bugs.

The remainder of this paper is organized as fol-
lows. The next section summarizes prior tech-
niques for protecting return addresses from stack-
smashing attacks. Sections 3 and 4 describe DISE
and the implementation of return-address protec-
tion. Section 5 presents experimental results.

2 Related Work

A number of techniques for protecting return ad-
dresses from buffer-overflow attacks have been
proposed and implemented. The most general
modify the C compiler to generate code that main-
tains runtime location and size information for each
allocated object and checks that object bounds are
respected [14, 16]. Unfortunately, this approach
introduces considerable overhead (up to an order
of magnitude) and may result in false positives.
Libsafe [2] is a new version of the C standard li-
brary that uses stack inspection to infer the maxi-
mum buffer sizes associated with pointers to stack
buffers and ensures that this maximum is not ex-
ceeded. Libsafe thwarts buffer-overflow attacks

only for stack buffers and onlyby standard library
data-copy functions (e.g., strcpy()). This far less
general solution catches a common form of attack,
does not require compiler support (although relink-
ing may be necessary), and is quite efficient.

Alternatively, one may forgo general buffer-
overflow detection and focus on detecting return-
address corruption, a key component of most
buffer-overflow attacks. StackGuard [9] modifies
the C compiler to generate function prolog/epilog
sequences that either (a) insert a “canary” word be-
fore the return address stored in each stack frame or
(b) dynamically update virtual memory page per-
missions to prevent the stack-resident return ad-
dress from being written. If a buffer overflows
across a return address, it (likely) corrupts the ca-
nary in the former case or triggers a VM trap in the
latter.

Libverify [2], Return Address Defender
(RAD) [4], and StackGhost [11] record the return
address on a parallel, protected shadow stack at
function entry and compare it to the return address
on the user stack at function exit, terminating
the program if there is a discrepancy. Libverify
transforms the program via binary rewriting, while
RAD is integrated into the C compiler. StackGhost
is a SPARC-specific implementation that hooks
into the register-window overflow/underflow
handlers to identify and check return addresses
without transforming the program binary.

3 DISE

In this section, we give an overview of DISE, fo-
cusing on aspects relevant to return-address protec-
tion. Full descriptions are available elsewhere [6].
The DISE hardware has two components. Theen-
gine is similar to the CISC-to-RISC decoder in IA-
32 processors [10, 12]. It inspects and potentially
rewrites every fetched instruction, feeding the exe-
cution engine an instruction stream with enhanced
functionality. Thecontroller is a gateway through
which the engine is dynamically programmed with
customization-specificproductions. Only the OS
has access to the controller.

Basic functionality. DISE performsinstruction

T.OPCLASS==load & T.RS==$sp
⇒ addq T.RS, 8, $dr0

T.OP T.RD, T.IMM($dr0)

(a)

ldq $r4, 32($sp)
. . .becomes. . .
addq $sp, 8, $dr0
ldq $r4, 32($dr0)

(b)

Figure 1: Production example (a) and its use (b).

pattern matchingandparameterized instruction se-
quence replacement. A pattern may specify any as-
pect of a single instruction: opcode, register,etc.
An instruction that matches a pattern (called atrig-
ger) is replaced in the dynamic instruction stream
by the corresponding replacement sequence. Re-
placement sequences are parameterized, so they
can be thought of as templates in which some fields
are literal and others are instantiated using fields
from the trigger. Figure 1 shows a contrived DISE
production that adds eight bytes to the address of
every load that uses the stack pointer as its base ad-
dress. Part (a) shows the production. In the replace-
ment sequence,T.OP, T.RS, T.RD, andT.IMM are di-
rectives to fill the corresponding holes with the trig-
ger’s opcode, source register, destination register,
and immediate, respectively. Part (b) shows the ex-
pansion of a particular load by this production.

Two useful features. DISE has two features that
facilitate the orchestration of global behavior from
“peephole,” single-instruction expansions. A ded-
icated register set, accessible only to replacement
instructions, provides inserted customization code
with fast storage—both for intra-sequence tempo-
raries and for passing values from one dynamic re-
placement sequence to a future one—without the
need to save/restore or reserve application registers.
The DISE registers have the same basic status as
the MIPS exception co-processor registers; they are
visible only from the right context,i.e., from within
DISE replacement sequences. In Figure 1$dr0 is
a dedicated DISE register. In examples, we often
use mnemonics for DISE registers (e.g., $dssp for
DISE shadow stack pointer), but they do not have
predefined uses.

DISE replacement sequences may also contain
control flow: conditionals, loops, and even func-
tion calls. However, all replacement sequence con-
trol flow must be internal. A dynamic replacement

sequence must appear toatomicallyreplace the cor-
responding original program trigger. There is no
way to jump into the middle of a replacement se-
quence from another point in the program. This
atomicity, which is enforced in hardware, is impor-
tant for security-related customizations; it ensures
that checks inserted by DISE cannot be subverted
or bypassed.

DISE functions and function calls.DISE internal
control transfer (i.e., intra-replacement-sequence
control flow) is possible but inefficient [6]. If
a replacement sequence requires complex control
logic, it is usually better to implement this logic
in a function using conventional instructions and
to call this function from within the replacement
sequence. The DISE replacement ISA includes
a conditional-call instruction (ccall) to efficiently
support functions that are called only infrequently.
DISE itself is disabled within the body of a func-
tion called from within a replacement sequence,
preserving the invariant that DISE transformations
are “flat,” i.e., that replacement sequences are not
recursively (and potentially infinitely) expanded.

Functions called from within DISE—which we
call DISE functions—use conventional instruc-
tions, but are different from conventional functions
in several ways. First, DISE functions can use three
instructions that are not accessible to conventional
code:dmfr (DISE move from register),dmtr (DISE
move to register), anddret (DISE return). These
instructions move DISE register values to and from
the standard set of registers (analogous to themfc0

andmtc0 instructions in MIPS). They are only le-
gal if the processor is currently in DISE mode,i.e.,
within a replacement sequence or a function called
from within a replacement sequence. Second, be-
cause DISE calls are not orchestrated by the com-
piler and do not use the standard calling conven-
tions, DISE functions must be written as if all non-
DISE registers are callee-saved.

DISE address space.DISE operates in the virtual
address space of the application which it modifies.
This arrangement reduces overhead and meshes
conveniently with multiprogramming (DISE state
is automatically saved on a context-switch), but
does require some loading/linking initialization

steps. At load time, DISE functions are loaded into
the application’s address space; their addresses are
hard coded into the productions that call them prior
to the latter being loaded into the DISE engine.
DISE is also allocated a small, fixed-size global
memory area in which it stores initial state. If more
memory is needed at runtime, DISE can simply call
malloc() from within one of its own DISE functions.

4 DISE Return Address Protection

We describe a DISE implementation of a mech-
anism for protecting return addresses from stack-
resident buffer-overflow attacks. The basic func-
tional design is simple. We maintain a heap-based
shadow stack that mirrors the return addresses
stored in the call stack. At each function return, we
check that the actual return address matches the ad-
dress on top of the shadow stack and alert the OS on
a mismatch. Although the approach is not new—it
resembles several existing techniques [2, 4, 11]—
the DISE implementation is conceptually simpler,
more efficient, and more secure (i.e., less vulnera-
ble). It can also operate on legacy code, dynami-
cally linked code, and even dynamically generated
code. There is also a software-distribution advan-
tage. A patch distributed in “DISE” form can be
applied transparently to all applications. The equiv-
alent software patches must be distributed and ap-
plied on an application or DLL basis.

Our implementation requires two (or three) pro-
ductions for rewriting calls, returns, and (poten-
tially) stores. We also load two DISE functions,ad-

drcheck() andexpand() . Finally, we use three ded-
icated DISE registers which we refer to mnemoni-
cally as$dssb (shadow stack base),$dssp (shadow
stack pointer), and$darp which points to the top of
the currently allocated shadow stack region.

Maintaining the shadow stack. Shadow-stack
management is performed by productions for call
(jsr and bsr) and return (ret) instructions. The
replacement sequence in the call production (top
of Figure 2) computes the return address using
the trigger’s own program counter, pushes it onto
the shadow stack, checks for shadow-stack over-
flow callingexpand() if necessary, and performs the

T.OPCLASS==jsr|bsr # match call insns
⇒ add T.PC, 4, $dr0 # compute ret addr

xor $dr0, $dxr, $dr0 # encode it (optional)
add $dssp, 16, $dssp # push it on...
stq $dr0, -8($dssp) # ... shadow stack
stq $sp, -16($dssp) # ... along w/ stack ptr
cmpeq $dssp, $darp, $dr0 # stack full?
ccall $dr0, expand # yes, expand stack
T.INST # perform the call

T.OPCLASS==ret # match return insns
⇒ ldq $dr0, -8($dssp) # pop ret addr...

add $dssp, -16, $dssp # ... from shadow stack
xor $dr0, $dxr, $dr0 # decode it (optional)
cmpne T.RS, $dr0, $dr0 # comp. to actuar ret addr
ccall $dr0, addrcheck # diff? figure out why
T.INST # perform the return

Figure 2: DISE productions for return-address
verification. Instructions implementing shadow-
stack maintenance and return-address verification
are emboldened.

original call (T.INST). If expand() is called, it will
allocate a larger stack region, copy the old stack
into the new buffer, and update the DISE registers
to reflect the new location. The return replacement
sequence (bottom) pops the shadow stack and per-
forms the original return (again,T.INST).

Verifying return addresses. In addition to pop-
ping the shadow stack, the return production veri-
fies that the return address matches the address at
the top of the shadow stack. The replacement se-
quence compares the popped address to the address
specified by the return’s source register (T.RS). On a
match—this is the common case—the original re-
turn instruction is executed. On a mismatch, the
addrcheck() function is called.

Normally, addrcheck() will terminate the pro-
gram because address mismatch indicates tam-
pering. However, there are circumstances in
which return-address mismatches are legal. The
use of non-local returns (e.g., exceptions or
setjmp() /longjmp()) will cause the system to falsely
report a corrupted return address. Previous sys-
tems [4, 11] handled these situations by repeatedly
popping the shadow stack until an address match
is obtained, terminating the program only when
the shadow stack underflows. This solution has
two drawbacks. First, it allows the shadow and

T.OPCLASS==store # match store instructions
⇒ lda $dr0, T.IMM(T.RS1) # compute target addr

srl $dr0, 26, $dr0 # get segment of addr
cmpeq $dr0, $dsr, $dr0 # comp. to shad. stack seg.
ctrap $dr0, error # trap if equal
T.INST # original store

Figure 3: DISE production to protect the shadow
stack by monitoring all stores.

runtime stacks to get out of sync when multiple
instances of the same call site are active. Sec-
ond, it does not prevent an attacker from divert-
ing control to arbitrary locations in the call chain;
although it would be challenging to exploit this
vulnerability, it is certainly possible. We solve
this problem by pushing the current stack pointer
($sp) along with the return address onto the shadow
stack. On a return-address mismatch, we repeat-
edly pop shadow stack entries until the return ad-
dress and stack pointerbothmatch (note that this is
performed by code inaddrcheck()). We depend on
the fact that the stack pointer itself, which is incre-
mented and decremented but not stored in memory,
cannot be smashed and can be reliably used to iden-
tify the calling context of a function and thus dis-
tinguish benign non-local returns from malicious
ones. Ifaddrcheck() recognizes a non-local return
and returns to the replacement sequence without
terminating the program, the actual return instruc-
tion (T.INST) is executed and program execution
continues.

Protecting the shadow stack itself.These DISE
productions ensure that actual return addresses cor-
respond to those in the shadow stack, so it is essen-
tial that the shadow stack be protected from attack.
There are several approaches to achieving this. We
may encode addresses in the shadow stack [11],
so that even if an attacker manages to corrupt it,
she will be unable to divert return destinations un-
less she is able to duplicate the encoding. We can
do this (as in Figure 2) by XORing addresses with
a secret, randomly-chosen (at application startup)
value. Because this value is held in a DISE regis-
ter ($dxr) it is invisible to the program and the at-
tacker. Alternatively, we may sandwich the shadow
stack between two unused, write-protected pages
(e.g., via mprotect()), thus preventing any buffer

from overflowing into it [2, 4].
In DISE, there is a more direct way of protect-

ing the shadow stack. We add a third production
that expands all stores and checks that they do not
write into DISE’s data area. We could achieve
this by checking the store address against$dssb

and$darp , terminating the program if it is between
them, but this is unnecessarily expensive. Alterna-
tively, we could allocate the shadow stack so that
all entries (and only stack entries) share the same
set of high-order bits (i.e., segment) and test that
the target of all stores do not refer to this seg-
ment. The production in Figure 3 uses the latter
approach. DISE register$dsr holds the segment
identifier of the shadow stack. This is logically sim-
ilar to software-based fault isolation [18] which it-
self has been implemented in DISE [6]. Note that
the stores that update the shadow stack appear in
replacement sequences which are not recursively
expanded, so they are not checked via the above
mechanism. This is the desired effect.

Discussion: Threat/security model. Our imple-
mentation targets a common form of attack: return-
address smashing or hijacking. It detects this attack
by maintaining a non-corruptible shadow stack of
return addresses and enforcing correspondence be-
tween the shadow and actual return sequences. Our
scheme works even if the code pointed to by a hi-
jacked return address is not stack-resident (e.g., a
“return-to-libc” attack [15]), scenarios which non-
executable stacks [17] fail to protect against. It is
important to note that we are not offering protec-
tion from general stack or heap buffer overruns,
data attacks due to such overruns (e.g., “malloc”
attacks), or even control-flow attacks on stored ad-
dresses other than return addresses (e.g., “VPTR
smashing” attacks [15]). We are currently investi-
gating the use of DISE to protect against these and
other attacks.

There are two other security issues that relate to
DISE specifically. First, since DISE does not op-
erate in functions called from within replacement
sequences, how are functions that are called from
within DISE functions—in the way thatmalloc() is
called from withinexpand() —protected? The an-
swer is that these functions are not directly pro-
tected, because their inputs and environments are

assumed to be safe because they are provided ei-
ther directly by DISE code (which we assume to be
safe) or are passed to DISE from the parts of the
application that are themselves protected by DISE.
The second issue involves an attacker getting con-
trol of DISE itself and programming it with mali-
cious rules. Here the answer is that since only the
OS has direct access to the DISE controller, mali-
cious access to the controller implies that the OS
has already been compromised.

Discussion: Disadvantages and limitations.We
have already enumerated the advantages of dy-
namic instrumentation via DISE over static ap-
proaches, but there are potential disadvantages too.
The most significant of these is the inability to op-
timize the instrumentation code in a larger scope.
One particularly powerful optimization that isn’t
available to DISE is the elimination of redun-
dancies across dynamic instrumentation snippets,
which includes hoisting the invariant portion of a
snippet out of an enclosing loop. The inability to
apply this optimization may result in unnecessary
dynamic instruction overhead.

While this shortcoming exists in general, it does
not play a significant role for this particular use
of DISE. The code snippets that maintain the
shadow stack and verify return addresses—i.e., the
call/return replacement sequences—do not have re-
dundant portions. There is, however, potential re-
dundancy across dynamic replacement sequences
of stores. In general, this redundancy would also
be difficult to eliminate statically since doing so
requires static address disambiguation. However,
there is at least one common scenario in which ad-
dress disambiguation is easy: stores through the
stack pointer. A static framework could avoid in-
strumenting most stack-pointer stores, or even all
of them if it could prove that the stack pointer it-
self never overlaps with DISE’s data area. Fortu-
nately, an analog of this optimization is available to
the DISE implementation as well. Specifically, we
could implicitly “trust” the stack pointer and only
instrument stores with non-stack-pointer base reg-
isters. Such trust is warranted because the stack
pointer is updated using arithmetic operations and
rarely saved to or restored from memory, and thus
any smashing of the stack pointer effectively im-

plies that the program has already been compro-
mised.

5 Evaluation

We use cycle-level simulation to evaluate the
DISE-based approach to buffer-overflow detection
both in terms of effectiveness and performance
overhead. First, we describe our simulator and
benchmarks.

Apparatus. Our simulator is built using Sim-
pleScalar’s Alpha AXP ISA and system call defi-
nition modules [3]. We model a 4-way superscalar
processor with a 12-stage pipeline and an execution
core that resembles an unclustered Alpha 21264
with a 128-entry re-order buffer and 80 reservation
stations. The on-chip memory system is composed
of 32KB 2-way set-associative instruction and data
caches, 64-entry 4-way set-associative instruction
and data TLBs, and a 1MB, 4-way set associative
L2. The “infinite” main memory has a 200 cycle
latency and is access via a 32 byte bus that oper-
ates at one quarter processor frequency. Our bench-
marks are selected from SPEC, MiBench [13], and
CommBench [19]. Other than the SPEC bench-
marks, we choose codes that would likely be sen-
sitive to attacks (e.g., those running with root per-
missions or in a trusted piece of hardware) and thus
would benefit from return address protection.

Protection effectiveness.We have identified three
vulnerable programs:overflow1, gzip-1.2.4, and
sendmail-8.7.5. The first was presented in a
hacker’s tutorial on buffer-overflow attacks [1] and
represents a prototypical vulnerability. The others
are versions of well-known codes that are vulnera-
ble to return address hijacking. In all three cases,
our DISE implementation successfully detected an
input attack and terminated the program. At the
same time, non-malicious inputs did not spuriously
signal an attack for these three programs or any of
the benchmarks used to evaluate performance.

Performance overhead. The additional instruc-
tions inserted at function call and return naturally
increase program execution time. Figure 4 plots
this overhead for two implementations—DISE and
software-only binary rewriting (BR)—of each of

1.0

1.2

1.4

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

DISE/XOR BR/XOR DISE/MFI BR/MFI

1.
59

1.
78

7.
21

%

29
.2

% 39
.1

%

21
.6

%

7.
21

%

29
.2

%

39
.1

%

21
.6

%

33
.4

% 77
.6

%

80
.4

%

39
.6

%

33
.4

%

80
.4

%

39
.6

%

77
.6

%

13
.2

%

0.
04

%

30
.7

%

0.
58

%

13
.2

%

0.
04

%

30
.7

%

0.
58

%

43
.4

% 39
.2

%

56
.1

%

11
.4

%

43
.4

% 39
.2

%

11
.4

%

56
.1

%

9.
03

%

0.
06

% 12
.1

%

0.
03

%

9.
03

%

0.
06

% 12
.1

%

0.
03

%

36
.1

%

28
.3

%

31
.9

%

17
.1

%36
.1

%

28
.3

%

31
.9

%

17
.1

%

spec mibench commbench
bzip2 eon mcf twolf blowfish.enc crc patricia sha cast.enc drr frag reed.dec

Figure 4: Return-address protection overhead.

two shadow stack protection schemes. The first
(XOR) encodes the shadow stack (as in Figure 2),
while the second (MFI) protects it using memory
fault isolation (i.e., checks before each store as in
Figure 3). TheBR implementations contain ex-
actly the same instructions as their DISE counter-
parts (after dynamic instrumentation) because the
former are not statically optimized. As discussed
in Section 4, return-address protection offers lit-
tle opportunity for static optimization. There are
four total experiments. Each bar represents execu-
tion time normalized to a baseline with no return-
address protection. Above each bar is the instru-
mentation overhead in terms of instruction count.

DISE/XOR overhead is generally low (e.g., less
than 10%). It is primarily a function of average
dynamic function size (equivalently, call/return fre-
quency). Programs with long-running functions
and few calls (e.g., crc, drr, and reed.dec) have
less overhead than ones with many calls to shorter-
running functions (e.g., mcf, twolf, blowfish.enc).
At first glance, it would seem that the relative over-
heads ofblowfish.encandpatricia are anomalous:
instruction overhead is higher forpatricia but ex-
ecution time overhead is higher forblowfish.enc.
This is due to a secondary effect: baseline IPC.
Blowfish.enchas a high baseline IPC that nearly
saturates the machine, so additional instructions
are expensive.Patricia has a low IPC and a lot
of “free” execution bandwidth; here additional in-
structions are relatively cheaper. It is important
to note that return-address protection instrumenta-
tion does not add to the execution critical path of
the protected application—there are no dependence
edges that flow from instrumentation code to ap-

plication code—so that when pipeline utilization is
low, they are effectively “soaked up” by the avail-
able resources.

DISE/MFI adds significantly more
instructions—three additional instructions are
needed for every store—and can result in higher
overheads for store-heavy benchmarks (e.g., 33%
on crc). Overheads in general, however, are still
reasonable at less than 20%.

The BR implementations generally perform
worse than their DISE counterparts. This differ-
ence is due to reduced instruction cache capacity
and a corresponding increase in miss rate. For
benchmarks with large instruction footprints (e.g.,
patricia, eon, twolf), DISE can dramatically out-
perform BR. This performance advantage is be-
yond the previously stated, less concrete advan-
tages of flexibility, transparency, non-subvertibility,
and ease-of-use.

6 Conclusion

Buffer-overflow attacks that hijack program con-
trol by overwriting a return address stored in a
stack frame are common. Existing techniques for
detecting these attacks are effective but often in-
convenient, difficult to implement, and inefficient.
We argue that the dynamic instruction stream ed-
itor (DISE) is a useful infrastructure for building
return-address protection mechanisms. DISE is
simple, non-subvertible, flexible, transparent, and
inexpensive. The general utility of DISE in the se-
curity domain remains an open question. We are
experimenting with DISE instrumentation for de-
tecting and thwarting other forms of attack.

References

[1] Aleph One. Smashing the stack for fun and
profit. Phrack, 7(49), Nov. 1996.

[2] A. Baratloo, N. Singh, and T. Tsai. Transpar-
ent run-time defense against stack smashing
attacks. InProc. of the USENIX Annual Tech-
nical Conference, Jun. 2000.

[3] D. Burger and T. M. Austin. The Sim-
pleScalar tool set, version 2.0. Technical Re-
port 1342, University of Wisconsin–Madison
Computer Sciences Department, 1997.

[4] T.-C. Chiueh and F.-H. Hsu. RAD: A
compile-time solution to buffer overflow at-
tacks. In Proc. of 21st Int. Conf. on Dis-
tributed Computing Systems, Apr. 2001.

[5] M. L. Corliss, E. C. Lewis, and A. Roth.
DISE: Dynamic instruction stream editing.
Technical Report MS-CIS-02-24, University
of Pennsylvania, Jul. 2002.

[6] M. L. Corliss, E. C. Lewis, and A. Roth.
DISE: A programmable macro engine for
customizing applications. InProc. 30th Intl.
Symp. on Computer Architecture, Jun. 2003.

[7] M. L. Corliss, E. C. Lewis, and A. Roth. A
DISE implementation of dynamic code de-
compression. InProc. of Conf. on Languages,
Compilers, and Tools for Embedded Systems,
pages 232–243, Jun. 2003.

[8] M. L. Corliss, E. C. Lewis, and A. Roth. Low-
overhead debugging via flexible dynamic in-
strumentation. Technical Report MS-CIS-04-
06, University of Pennsylvania, Mar. 2004.

[9] C. Cowan, C. Pu, D. Maier, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. StackGuard:
Automatic adaptive detection and prevention
buffer overflow attacks. InProc. of 7th
USENIX Security Conference, pages 63–78,
Jan. 1998.

[10] K. Diefendorf. K7 challenges Intel.Micro-
processor Report, 12(14), Nov. 1998.

[11] M. Frantzen and M. Shuey. StackGhost:
Hardware facilitated stack protection. In
Proc. of the 10th USENIX Security Sympo-
sium, pages 55–66, Aug. 2001.

[12] P. Glaskowsky. Pentium 4 (partially) pre-
viewed. Microprocessor Report, 14(8), Aug.
2000.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst,
T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A free, commercially representa-
tive embedded benchmark suite. InProc.
of 4th Annual IEEE Workshop on Workload
Characterization, Dec. 2001.

[14] R. Jones and P. Kelly. Backwards-compatible
bounds checking for arrays and pointers in
C programs. InProc. of the Int. Workshop
on Automatic Debugging, pages 13–26, May
1997.

[15] J. Pincus and B. Baker. Beyond stack
smashing: Recent advances in exploiting
buffer overruns.IEEE Security and Privacy,
2(4):20–27, Jul./Aug. 2004.

[16] O. Ruwase and M. S. Lam. A practical dy-
namic buffer overflow detector. InProc. of
the 11th Network and Distributed Systems Se-
curity Symposium, Feb. 2004.

[17] Solar Designer. Linux kernel
patch from the openwall project.
http://www.openwall.com/linux/, 2004.

[18] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isola-
tion. In Proc. of 14th ACM Symp. on Operat-
ing Systems Principles, Dec. 1993.

[19] T. Wolf and M. Franklin. CommBench – a
telecommunications benchmark for network
processors. InProc. of IEEE Int. Symp. on
Performance Analysis of Systems and Soft-
ware, Apr. 2000.

