
A DISE Implementation of Dynamic Code Decompression

Marc L. Corliss E Christopher Lewis Amir Roth
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania USA

� mcorliss,lewis,amir � @cis.upenn.edu

ABSTRACT
Code compression coupled with dynamic decompression is an im-
portant technique for both embedded and general-purpose micro-
processors. Post-fetch decompression, in which decompression is
performed after the compressed instructions have been fetched, al-
lows the instruction cache to store compressed code but requires a
highly efficient decompression implementation. We propose im-
plementing post-fetch decompression using dynamic instruction
stream editing (DISE), a programmable decoder—similar in struc-
ture to those in many IA32 processors—that is used to add func-
tionality to an application by injecting custom code snippets into its
fetched instruction stream. A DISE implementation of post-fetch
decompression naturally supports customized program-specific de-
compression dictionaries, enables parameterized decompression al-
lowing similar instruction sequences to share dictionary entries,
and uses no decompression-specific hardware. Cycle-level simu-
lation of DISE decompression shows that it can reduce static pro-
gram size by 35% and execution time by 20%. Parameterized de-
compression, a feature unique to DISE, accounts for 20% of the
code size reduction by making more effective use of the dictionary
and allowing PC-relative branches to be included in compressed
sequences. DISE-based compression can reduce total energy con-
sumption by 10% and the energy-delay product by as much as 20%.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; C.1 [Computer Systems
Organization]: Processor Architectures

General Terms
Performance, Design, Experimentation

Keywords
Code compression, code decompression, DISE

1. INTRODUCTION
Code compression coupled with dynamic decompression is

a useful technique in many computing contexts. Certainly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00.

(de)compression benefits embedded devices where power, size, and
cost constraints force the use of small caches and memories. But
general-purpose systems can benefit from the technique as well.
Not only is power a growing concern for these systems, they can
also use (de)compression to improve performance.

Dynamic code decompression techniques are characterized by
when they perform decompression. Several systems integrate de-
compression into the instruction cache fill path [12, 22]. The advan-
tages of fill-path decompression is that it allows the use of unmodi-
fied cores while incurring the decompression penalty on instruction
cache misses only. Its disadvantages are that it stores uncompressed
code in the instruction cache and requires a mechanism for trans-
lating instruction addresses from the uncompressed image (in the
pipeline and instruction cache) to the compressed one (in mem-
ory). An alternative approach decompresses instructions after they
are fetched from the cache but before they enter the execution en-
gine [16]. Post-fetch decompression requires a modified processor
core and an ultra-efficient decompression implementation, because
every fetched instruction must at the very least be inspected for
possible decompression. However, it allows the instruction cache
to store code in compressed form and eliminates the need for a
compressed-to-decompressed address translation mechanism (only
a single static version of the code exists, the compressed one).

In this paper, we propose an implementation of post-fetch code
decompression via dynamic instruction stream editing (DISE) [7].
DISE is a hardware-based instruction macro-expansion facil-
ity similar in structure and function to IA32 CISC-instruction-
to-RISC-microinstruction decoders. However, it is both pro-
grammable and not specific to CISC ISAs. Rather than merely
changing the representation of the fetched instruction stream, DISE
uses the expansion process to augment or modify its functionality
by splicing custom code snippets into it. DISE is a single mech-
anism that unifies the implementation of a large number of func-
tions (e.g., memory fault isolation, profiling, assertion checking,
etc.) that, to date, have been implemented in isolation using ad hoc
structures. The hardware components of DISE (less the program-
ming interface) are well understood and already exist in many IA32
microprocessors [9, 10, 11].

A DISE implementation of dictionary-based post-fetch decom-
pression has several important virtues. DISE’s macro-expansion
functionality enables parameterized (de)compression, an extension
to conventional decompression that allows multiple, similar-but-
not-identical decompression sequences to share dictionary entries,
improving dictionary space utilization and allowing PC-relative
branches to be included in compressed instruction sequences.
DISE’s programming interface also allows the decompression dic-
tionary to be customized on a per application basis, further improv-
ing compression. Finally, as a general purpose mechanism, DISE

I$
(compressed)

PT

RT

decoder

DISE

execution engine
in-order or out-of-order

controller D$

in
st

an
tia

to
r

DISE Engine

Figure 1: DISE structures in processor pipeline.

can implement many other features and even combine them (dy-
namically) with decompression.

We evaluate DISE decompression via cycle-level simulation.
On the SPEC2000 and MediaBench benchmarks, the DISE
(de)compression implementation enables code size reductions of
over 35% and performance improvements (execution time reduc-
tions) of 5–20%. Parameterized decompression, a feature unique
to the DISE implementation, accounts for 20% (absolute measure).
We also show that dictionary programmability is an important con-
sideration for dynamic decompression. Although previous post-
fetch decompression proposals do not preclude programmability
and may even assume it, none evaluates its importance or provides
a mechanism for its implementation. Finally, we show that DISE-
based compression can reduce total energy consumption by 10%
and the energy-delay product by as much as 20%.

The remainder of the paper is organized as follows. The next sec-
tion introduces DISE. Section 3 presents and discusses our DISE
implementation of dynamic code (de)compression, and Section 4
evaluates it. The final two sections summarize related work and
conclude.

2. DISE
Dynamic instruction stream editing (DISE) [7] is a facility for

implementing application customization functions (ACFs). ACFs
customize a given application for a particular execution environ-
ment. Examples of ACFs include profiling, dynamic optimization,
safety checking, and (de)compression. Traditional ACF imple-
mentations have been either software or hardware only. The soft-
ware solutions inject instructions into the application’s instruction
stream, but require expensive binary modification. The hardware
approaches customize the application using dedicated pipeline
stages, but are functionally rigid. DISE is a cooperative software-
hardware mechanism for implementing ACF. Like software, DISE
adds/customizes application functionality by enhancing/modifying
its execution stream. Like hardware, DISE transforms the dynamic
instruction stream, not the static executable.

DISE inspects every fetched instruction and macro-expands
those matching certain patterns into parameterized instruc-
tion sequences. The expansion rules that encode instruc-
tion patterns and replacement sequences—called productions—
are software-specified. From a hardware standpoint, DISE
is similar to the CISC-instruction-to-RISC-microinstruction de-
coders/expanders used in IA32 microprocessors [9, 10, 11]. To
these, DISE adds a programming interface that allows applications
to supplement their own functionality and trusted entities (i.e., the
OS kernel) to augment or modify the functionality of other appli-
cations. Currently, decoder-based macro-expansion is used to sim-
plify the execution engines of CISC processors. DISE performs a
different function (adding functionality to an executing program)
and so may be used in RISC processors as well. In this section, we
describe those DISE features that are salient to decompression.

As shown in Figure 1, the DISE hardware complex is com-
prised of two blocks (shaded). The DISE engine performs match-
ing and expansion of an application’s fetch stream (described
below). The DISE engine is a part of the processor’s decode
stage and its components—the pattern table (PT), replacement ta-
ble (RT) and instantiation logic—are quite similar to correspond-
ing structures—match registers, microinstruction ROM, and alias
mechanism, respectively—already present in IA32 microproces-
sors to convert CISC ISA instructions to internal RISC micro-
instruction sequences [9, 10, 11]. The DISE controller provides
an interface for programming the PT and RT, abstracting the mi-
croarchitectural formats of patterns and replacement instructions
from DISE clients. While the PT and RT are continuously active
(unless disabled), the DISE controller is a co-processor that is only
activated when the DISE engine is configured (i.e., rarely).

DISE engine. The DISE engine—PT, RT, and instantiation
logic—matches and potentially replaces/expands every instruction
in an application’s fetch stream. The PT contains instruction pat-
terns specifications. These patterns may include any part of the in-
struction itself: opcode, logical register names, or immediate field.
Thus, for example, DISE is able to match instructions of the form,
“stores that use the stack pointer as their base address.” The RT
houses specifications for the instruction sequences (called replace-
ment sequences) that are spliced into the instruction stream when
there is a match in the PT. A PT match produces an RT identifier,
naming the RT-housed replacement sequence associated with the
matching instruction pattern. A given PT entry can store an RT
identifier directly, or indicate which bits in the matching instruc-
tion are to be interpreted as the identifier. The reason for this dual
mode of operation is discussed below.

To enable interesting functionality, replacement sequences are
parameterized. An RT entry—corresponding to a single replace-
ment instruction—contains a replacement literal and a series of
instantiation directives that specify how the replacement literal is
to be combined with information from the matching instruction to
form the actual replacement instruction that will be spliced into the
application’s execution stream. The instantiation logic executes the
directives. Parameterization permits transformations like the fol-
lowing: “replace loads with a sequence of instructions that masks
the upper bits of the address and then performs the original load.”
The PT and RT entries for this particular production are shown
(logically) in Figure 2. The PT entry matches the opcode of the
instruction only. The two-instruction replacement sequence makes
heavy use of parameterization (e.g., for the second replacement in-
struction we simply copy every field from the original fetched in-
struction).

In addition to matching and parameterized replacement, DISE
has several features—notably the use of a dedicated register space,
and replacement sequence internal control—that simplify ACF im-
plementation and improve ACF performance. Neither of these fea-
tures is used in (de)compression.

DISE usage modes. DISE has two primary usage modes. In
application-transparent mode, it operates on unmodified executa-
bles using productions that match “naturally-occurring” instruc-
tions with conventional opcodes. Examples of transparent ACFs
include branch and path profiling (productions are defined for con-
trol transfer instructions) and memory fault isolation (productions
are defined for loads and stores). In application-aware mode, DISE
uses productions for codewords, specially-crafted instructions that
do not occur naturally which are planted in the application by a
DISE-aware rewriting tool. Codewords are typically constructed
using reserved opcodes. Code decompression is an example of
aware functionality. A DISE-aware utility compresses the origi-

RT ID LITERAL DOP DR1 DR2 DRD DIMM
0 andi –, 00ff, – – R2 – R2 –
0 – –, –(–) OP R1 R2 RD IMM

PT OP R1 R2 RD IMM RTID
ldq – – – – 0

Figure 2: Sample DISE PT/RT entries.

nal executable by replacing common multi-instruction sequences
with decompression codewords. At runtime, DISE replaces these
codewords with the appropriate original instruction sequences.

The two usage modes correspond to the two methods of spec-
ifying RT identifiers. Transparent productions match “naturally-
occurring” instructions whose raw bits cannot be interpreted as RT
identifiers. For these, RT identifiers are stored directly in the PT en-
tries (as in Figure 2). Aware productions must map a small number
of reserved opcodes (perhaps even just one) to a large number of
replacement sequences, and thus store RT identifiers in the planted
DISE codewords.

DISE interface. DISE access is mediated by two layers of ab-
straction and virtualization. The DISE controller abstracts the inter-
nal formats of the PT and RT allowing productions to be specified
in a language that resembles an annotated version of the proces-
sor’s native ISA. The controller also virtualizes the sizes of the PT
and RT, using a dedicated fixed-size counter table and RT tagging
to detect and signal PT and RT misses, respectively. RT and, to a
lesser degree, RT virtualization are crucial to improving the utility,
generality, and portability of DISE ACFs. The OS kernel virtual-
izes the set of active productions to both preserve the transparency
of multiprogramming and secure processes from malicious produc-
tions defined by other applications. OS kernel mediation does allow
applications direct control over DISE productions that act on their
own code.

The PT and RT are the top, “active” components of the DISE
production memory hierarchy. DISE productions are encoded into
executables in a special .dise segment, and are paged into main
memory via traditional virtual memory hardware (they may also be
created in memory directly). From memory, the productions may
enter the processor either through the instruction memory struc-
tures or the data memory ones. The instruction path is attractive be-
cause it passes through the conventional decoder. The data path is
preferable because productions often need to be manipulated (more
on this shortly). A good compromise is to treat productions as data
elements, but provide a DISE-controller managed path for passing
them through the decode stage en route to the RT. The mechanics
of moving productions from memory to the PT and RT (either im-
peratively or on a miss) resemble those of handling software TLB
misses (n.b., not page fault)—the thread is serialized by a short
handler—and have similar costs.

The primary use of production manipulation, aside from the
dynamic creation of productions, is the composition of multiple
ACFs. DISE is a general facility that can implement a wide range of
transparent and aware ACFs, both in isolation and together. Com-
position is performed by merging the productions sets of ACFs and
applying the productions of one to the replacement sequences of
the other. Previous work showed how decompression could be
composed with memory fault isolation, a security ACF that in-
spects/isolates an application’s memory operations [7]. Compo-
sition is a unique and powerful DISE feature that enables new soft-
ware usage models. Although the composition of decompression
with other ACFs is interesting, we do not evaluate it further here.

Static code
lda a2, 8(a2)
ldq a4, 0(a2)
cmplt a4, a0, a5
bne a5, 0x1200bd00
lda a3, -8(a3)
ldq a4, 0(a3)
cmplt a4, a0, a5
beq a5, 0x1200bd10
cmpeq a2,a3,a5
bne a5, 0x1200bd20

Static code
reserved #0
bne a5, 0x1200bd00
reserved #3
beq a5, 0x1200bd10
cmpeq a2,a3,a5
bne a5, 0x1200bd20

Dictionary (RT)
0 lda a2, 8(a2)

ldq a4, 0(a2)
cmplt a4, a0, a5

3 lda a3, -8(a3)
ldq a4, 0(a3)
cmplt a4, a0, a5

Static code
reserved a2, 8, #0
bne a5, 0x1200bd00
reserved a3, -8, #0
beq a5, 0x1200bd10
cmpeq a2,a3,a5
bne a5, 0x1200bd20

Dictionary (RT)
0 lda P1, P2(P1)

ldq a4, 0(P1)
cmplt a4, a0, a5

(b) unparameterized (de)compression

(c) parameterized (de)compression

(a) uncompressed code

Figure 3: (De)compression examples.

3. (DE)COMPRESSION WITH DISE
DISE enables an implementation of dictionary-based post-fetch

decompression that is functionally similar to a previously described
scheme [16]. The DISE implementation is unique in that it supports
parameterized decompression, has a programming interface that al-
lows program-specific dictionaries, and uses hardware that is not
decompression-specific. We elaborate on how DISE may be used
to perform dynamic decompression and present our compression
algorithm.

3.1 Dynamic Decompression
A DISE decompression implementation uses the RT to store the

decompression dictionary. Decompression is an “aware” ACF. A
DISE-aware compressor replaces frequently occurring instruction
sequences with DISE codewords, which are recognized by their
use of a single reserved opcode. DISE decompression uses a sin-
gle PT entry to match all decompression codewords via the re-
served opcode, and the codeword itself encodes the RT identifier
of the appropriate replacement sequence. This arrangement is basi-
cally the same as the one used by the previously described scheme.
However, to support parameterized decompression, DISE also uses
some non-opcode bits of a codeword to encode register/immediate
parameters. The parameter/RT-identifier division is flexible and
may be changed on a per-application basis. For instance, in a 32-
bit ISA with 6-bit opcodes, we could use 2K decompression entries
(11 identifier bits) and up to 3 register/immediate parameters of 5
bits each (15 bits total). Alternatively, the 26 non-opcode bits could
be divided to allow the specification of up to 64K decompression
entries (16 bits) with each using up to 2 parameters (10 bits).

Parameterized (de)compression. Register/immediate parame-
ters encoded into decompression codewords exploit DISE’s param-
eterized replacement mechanism to allow more sophisticated com-
pression than that supported by dedicated (i.e., dictionary-index
only) decompressors. In DISE, a single decompressed code tem-
plate may yield decompressed sequences with different register
names or immediate values when instantiated with different “argu-
ments” from different static locations in the compressed code. In
this way, parameterization can be used to make more efficient use
of dictionary space. The use and benefit of parameterized decom-
pression is illustrated in Figure 3. Part (a) shows uncompressed

static code; the two boxed three-instruction sequences are candi-
dates for compression. Part (b) shows the static code and the dic-
tionary (RT) contents for unparameterized compression. Since the
sequences differ slightly, they require separate dictionary entries.
With parameterized decompression, part (c), the two sequences can
share a single parameterized dictionary entry. The entry uses two
parameters (shown in bold): P1 parameterizes the first instruction’s
input and output registers and the second instruction’s input regis-
ter, P2 parameterizes the first instruction’s immediate operand. To
recover the original uncompressed sequences, the first codeword
uses a2 and 8 as values for the two parameters, while the second
uses a3 and -8, respectively.

In addition to allowing more concise dictionaries, parameteriza-
tion permits the compression of sequences containing PC-relative
branches. Conventional mechanisms are incapable of this be-
cause compression itself changes PC offsets. Although two static
branches may use the same offset before compression, it is likely
this will not be true after compression. General solution of
this conflict is NP-complete [20]. In fact, post-compression PC-
relative offset changes are no longer a problem. Multiple static
branches that share the same dictionary entry prior to compres-
sion can continue to do so afterward. With parameterization, even
branches that use different a priori offsets can share a dictionary
entry. The one restriction to incorporating PC-relative branches
into (de)compression entries is that their offsets must fit within the
width of a single parameter. This restriction guarantees that no
iterative rewriting will be needed, because compression can only
reduce PC-relative offsets. As we show in Section 4, the ability to
compress PC-relative branches gives a significant benefit, because
they represent as much as 20% of all instructions.

Parameterization is effective for two reasons. First, only a few
parameters are needed to capture differences between similar se-
quences. This is due to the local nature of register communication
of common programming idioms and the resulting register name
repetition. In Figure 3, the three instruction sequence (lda, ldq,
cmplt) increments an array pointer, loads the value, and compares
it to a second value. The 7 register names used within this sequence
represent four distinct values: the array element pointer, the ar-
ray element value, the compared value and the comparison result.
Given four register parameters, we could generalize this sequence
completely. Second, a small number of bits (we use five) suffice
to effectively capture most immediate values. Certainly, most im-
mediate fields are wider than five bits. The key here is that in the
static uses of a given decompression entry only a few immediates
will be used and this small set can be compactly represented in a
small number of bits. In our example, the immediate used in lda is
the size of the array element. In a 64-bit machine, this number will
most likely be some small integer multiple of 8. By defining the
interpretation of the bits of P2 to be the three-bit left-shift of the
literal parameter, we can capture a large number of array accesses
in a single dictionary entry.

3.2 Compression Algorithm
Code compression for DISE consists of three steps. First, a com-

pression profile is gathered from one or more applications. Next, an
iterative algorithm uses the compression profile to build a decom-
pression dictionary (i.e., the virtual contents of the RT). Finally, the
static executable is compressed using the dictionary (in reverse) to
replace compressible sequences (i.e., those that match dictionary
entries) with appropriate DISE codewords. We elaborate on each
step, below.

Gathering a compression profile. A compression profile is a
set of weighted instruction sequences extracted from one or more

1 Initialize dictionary D
2 P � GenerateCompressionProfile

���
programs ���

3 while � p � P s.t. benefit(p) 	 cost(p)
4 select p � P with largest benefit(p)
 cost(p)
5 P � P
 �

p �
6 UpdateDictionary(D, p)

�
unify p with existing

7 entries of D if possible �
8 foreach q � P
9 benefit(q) � RecalculateBenefit(D, q)
10 return D

Figure 4: Dictionary construction algorithm.

applications. If customized per-program dictionaries are supported,
the compression profile for a given program is mined from its own
text. If the dictionary is fixed (i.e., a single dictionary is used for
multiple programs), a profile that represents multiple applications
may be more useful.

A compression profile may contain a redundant and exhaustive
representation of instruction subsequences in a program. For in-
stance, the sequence � 1,2,3,4 	 may be represented by up to six se-
quences in the profile: � 1,2 	 , � 2,3 	 , � 3,4 	 , � 1,2,3 	 , � 2,3,4 	 ,
and � 1,2,3,4 	 . This exhaustive representation is not required, but
it gives the dictionary construction algorithm (below) maximum
flexibility, improving resultant dictionary quality. We limit the
maximum length of these subsequences to some small k (the min-
imum length of a useful sequence is two instructions), and we do
not allow the sequences to span basic blocks. The latter constraint
is necessary for correctness because DISE does not permit con-
trol to be transfered to the middle of a replacement sequence. Both
constraints limit the size of compression profiles and instruction se-
quence lengths, which are naturally not very long (see Section 4).

A weight is associated with each instruction sequence in a pro-
file in order to estimate the potential benefit of compressing it.
We compute benefit of sequence p via the formula: benefit(p) =
weight(p) � (length(p)
 1). The latter factor represents the num-
ber of instructions eliminated if an instance of p is compressed to a
single codeword. Weight may be based on a static measure (i.e., the
number of times the sequence appears in the static executable(s)), a
dynamic measure (i.e., the number of times the sequence appears in
some dynamic trace or traces), or some combination of the two, al-
lowing the algorithm to target compression for static code size, re-
duced fetch consumption—a feature that can be used to reduce in-
struction cache energy consumption—or both. For best results, the
weights in a profile should match the overlap relationships among
the instruction sequences. In particular, the weight of a sequence
should never exceed the weight associated with one of its proper
subsequences, since the appearance of the subsequence must be at
least as frequent as the appearance of the supersequence.

Building the dictionary. A compression/decompression dictio-
nary is built from the instruction sequences in a compression profile
using the iterative procedure summarized in Figure 4. At each it-
erative step, the instruction sequence with the greatest estimated
compression benefit (minus its cost in terms of space consumed in
the dictionary) is identified and added to the dictionary. In environ-
ments where the dictionary is fixed and need not be encoded into
the application binary, we set the cost of all sequences to zero. In
this case, it may be useful to cap the size of the dictionary to pre-
vent it from growing too large. The iterative process continues until
no instruction sequences have a benefit that exceeds their cost.

When a sequence is added to the dictionary, corrections must be
made to the benefits of all remaining sequences that fully or par-

tially overlap it to account for the fact that these sequences may no
longer be compressed. Since DISE only expands the fetch stream
and does not re-expand the expanded stream, a sequence that con-
tains a decompression codeword cannot itself be compressed. We
recompute the benefit of each sequence (using RecalculateBene-
fit()) given the sequences that are currently in the dictionary and
information encoded in the profile.

Benefit correction monotonically reduces the benefit of a se-
quence, and may drive it to zero. For example, from our group
of six sequences, if sequence � 1,2,3 	 is selected first, the benefit
of the sequence � 1,2,3,4 	 goes to zero. Once � 1,2,3 	 is com-
pressed, no sequence � 1,2,3,4 	 will remain. If � 1,2,3,4 	 is se-
lected first, the benefit of sequence � 1,2,3 	 will be reduced, but
perhaps not to zero. Once � 1,2,3,4 	 is compressed, instances of
� 1,2,3 	 may still be found in other contexts.

Incorporating parameterized compression. The dictionary
building algorithm is easily extended to support parameterized
compression. At each step, before adding the selected sequence to
the end of the dictionary, we attempt to unify it via parameterization
with an existing entry. Two sequences may be unified if they differ
by at most p distinct register specifiers or immediate values, where
p is the maximum number of parameter values that can be accom-
modated within a given instruction (a 32-bit instruction can realisti-
cally accommodate 3). For instance, assuming p is 1, the sequence
� addq r2,r2,8; ldq r3,0(r2) 	 can be unified with the existing se-
quence � addq r4,r4,8; ldq r3,0(r4) 	 by the decompression entry
� addq p1,p1,8; ldq r3,0(p1) 	 . The sequence � addq r2,r2,16; ldq
r3,0(r2) 	 cannot be unified with the existing sequence using only a
single parameter. DISE does not support opcode parameterization.
If unification is possible, the sequence is effectively added to the
dictionary for free, i.e., without occupying any additional dictio-
nary space. If unification with multiple entries is possible—a rare
occurrence since it implies that two nearly identical entries were
not already unified with each other—the one that necessitates the
fewest number of parameters is chosen.

Even in environments where the virtual dictionary size is capped,
parameterization allows us to continue to add sequences to the dic-
tionary so long as they can be unified with existing entries. Simi-
larly, the algorithm adds sequences whose cost exceeds their bene-
fit if they may be unified with existing dictionary entries (i.e., they
have effectively no cost).

Compressing the program. Given a decompression
dictionary—a set of decompression productions and their RT
identifiers (virtual indices)—compressing a program is straight-
forward. The executable is statically analyzed and instruction
sequences that match dictionary entries are replaced by the corre-
sponding DISE codewords. The search-and-replace procedure is
performed in dictionary order. In other words, for each dictionary
entry, we scan the entire binary (or function), and compress all
instances of that entry before attempting to compress instances of
the next entry. This compression order matches the order implicitly
assumed by our dictionary selection algorithm. When compression
is finished, branch and jump targets—including those in jump
tables and PC-relative offsets in codewords—are recomputed.

4. EXPERIMENTAL EVALUATION
DISE is an effective mechanism for implementing dynamic de-

compression in both general purpose and embedded processors.
We demonstrate this using cycle-level simulation. Our primary
metric is compression ratio, the ratio of compressed to uncom-
pressed program size. Section 4.2 shows the effectiveness of DISE-
based compression versus a dedicated-hardware approach. Sec-
tion 4.3 explores the sensitivity of compression to factors such as

dictionary size and number parameters. Section 4.4 demonstrates
the impact of program-specific compression. The final two sections
evaluate (de)compression’s performance and energy implications.

4.1 Experimental Environment
Simulator. Our simulation tools were built using the Sim-

pleScalar Alpha instruction set and system call definition mod-
ules [5]. The timing simulator models a MIPS R10000-like pro-
cessor with a parameterizable number of pipeline stages, register
renaming, out-of-order execution, aggressive branch and load spec-
ulation and a two-level on-chip memory hierarchy. Via parameter
choices, we model both general-purpose and embedded cores. The
general-purpose core is 4-way superscalar, with a 12 stage pipeline,
128 entry re-order buffer, 80 reservation stations, 32KB instruction
and data caches, and a 1MB L2. The embedded configuration is
2-way superscalar, with a 5 stage in-order pipeline, an 8KB in-
struction cache, 16KB data cache, and no L2. The simulator also
models a parameterized DISE mechanism. Our default configu-
ration uses a 32 entry PT (although decompression requires only
a single PT entry) and a 2K-instruction 2-way set-associative RT.
Each PT entry occupies about 8 bytes while each RT entry occu-
pies about 6 bytes—replacement instruction specifications are rep-
resented using 8 bytes in the executable, but this representation is
quite sparse—so the total sizes of the two structures are 512 bytes
and 12KB, respectively. For the general purpose configuration, we
assume a 2-stage decoder, so DISE expansion introduces no over-
head. For the embedded configuration, we assume an a priori 1-
stage decoder. The DISE configurations have an additional pipeline
stage and suffer an increased branch misprediction penalty. The
DISE interface and its cost are not explicitly modeled. We model
the DISE miss handler by flushing the pipeline and stalling for 30
cycles.

The simulator models power consumption using the Wattch
framework [4] and CACTI-3 [21]. Our power estimates are for
0.35µm technology. The structures were parameterized carefully to
minimize power consumption and roughly mirror the per-structure
power distributions of actual processors. For a given logical
configuration, CACTI-3 employs both squarification and horizon-
tal/vertical sub-banking to minimize some combination of delay,
power consumption and area. We configure both the instruction
cache and RT as two-way interleaved, single (read/write) ported
structures that are accessed at most once per cycle.

Benchmarks. We perform our experiments on the SPEC2000
integer and MediaBench [15] benchmarks. All programs are com-
piled for the Alpha EV6 architecture with optimization flags -O4
-fast. Our simulation environment extracts all nops from both the
dynamic instruction stream and the static program image. Nops
are excluded from all measurements. When execution times are re-
ported for SPEC, they come from complete runs sampled at 10%
(100M instructions per sample) using the train input. MediaBench
results are for complete runs using the inputs provided [15]; no
sampling is used.

Dictionaries. Compression profiles are constructed by static bi-
nary analysis. The compression tool generates a set of decom-
pression productions (the dictionary) via the algorithm presented
in Section 3. Our default compression parameters are a maximum
dictionary entry length of 8 instructions and no more than 3 reg-
ister/immediate parameters per entry. Except for the experiments
in Section 4.4, a custom dictionary is used for each benchmark.
Except for the experiment in Section 4.6, each dictionary is con-
structed using a compression profile encoding static instruction se-
quence frequency.

0.6

0.7

0.8

0.9

1.0

1.1

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

 1
50

9
/ 1

.3

 3
79

8
/ 1

.2

 6
17

5
/ 1

.5

 7
23

8
/ 1

.2

 1
48

78
 /

1.
1

 1
67

2
/ 1

.3

 1
37

7
/ 1

.3

 2
60

7
/ 1

.2

 7
23

6
/ 1

.2

 4
36

2
/ 1

.2

 5
73

2
/ 1

.2

 3
34

3
/ 1

.3 6
79

 /
2.

5

 1
52

7
/ 2

.3

 3
53

1
/ 2

.7

 3
50

4
/ 2

.3

 5
91

9
/ 2

.3

 7
02

 /
2.

4

 6
10

 /
2.

4

 1
20

7
/ 2

.4

 2
95

9
/ 2

.3

 1
64

4
/ 2

.4

 3
25

0
/ 2

.4

 1
40

3
/ 2

.5

 3
23

 /
3

 7
39

 /
2.

8

 2
17

8
/ 3

.3

 1
81

1
/ 2

.7

 3
02

3
/ 2

.6

 3
23

 /
2.

9

 2
86

 /
3

 6
15

 /
2.

8

 1
48

6
/ 2

.7

 7
63

 /
2.

9

 1
79

9
/ 2

.9

 6
73

 /
3.

1

 8
9

/ 2
.6

 2
26

 /
2.

5

 9
21

 /
3.

3

 6
23

 /
2.

5

 1
17

1
/ 2

.4

 8
7

/ 2
.4

 8
3

/ 2
.6

 1
85

 /
2.

5

 5
49

 /
2.

5

 2
16

 /
2.

6

 7
67

 /
2.

7

 1
82

 /
2.

7

 3
25

 /
2.

4

 8
35

 /
2.

3

 1
38

7
/ 2

.6

 1
74

7
/ 2

.3

 2
04

8
/ 2

.2

 3
44

 /
2.

3

 3
09

 /
2.

5

 5
69

 /
2.

4

 1
53

1
/ 2

.3

 9
88

 /
2.

4

 1
23

5
/ 2

.3

 7
21

 /
2.

3

 3
98

 /
2.

3

 9
44

 /
2.

3

 1
46

4
/ 2

.6

 1
73

7
/ 2

.3

 2
04

8
/ 2

.2

 4
31

 /
2.

3

 3
94

 /
2.

4

 6
27

 /
2.

4

 1
56

4
/ 2

.3

 1
08

8
/ 2

.3

 1
25

9
/ 2

.3

 8
25

 /
2.

3

0.6

0.7

0.8

0.9

1.0

1.1

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

dictionarydedicated -1insn -2byteCW +8byteDE +3param DISE

adpcm.caudio epic.epic epic.unepic g721.dec ghostscript.gs gsm.toast jpeg.cjpeg jpeg.djpeg mesa.mipmap mpeg2.dec mpeg2.enc pegwit.enc

 1
08

1
 /

1.
3

 2
06

6
 /

1.
3

 1
57

6
 /

1.
3

 1
01

6
 /

1.
4

 1
42

49
 /

 1
.2

 1
65

0
 /

1.
3

 2
12

8
 /

1.
3

 2
31

3
 /

1.
3

 8
70

6
 /

1.
3

 2
09

3
 /

1.
3

 2
91

4
 /

1.
3

 1
68

0
/ 1

.5

 4
95

 /
 2

.4

 9
29

 /
 2

.4

 7
34

 /
 2

.4

 5
12

 /
 2

.5

 5
81

1
 /

2.
4

 7
83

 /
 2

.4

 1
07

1
 /

2.
4

 1
13

4
 /

2.
3

 4
00

6
 /

2.
5

 9
45

 /
 2

.4

 1
27

1
 /

2.
4

 8
53

 /
 2

.7

 2
30

 /
 3

 4
35

 /
 3

 3
53

 /
 3

 2
41

 /
 3

 2
84

4
 /

2.
8

 3
72

 /
 2

.8

 5
11

 /
 2

.8

 5
40

 /
 2

.8

 2
07

8
 /

3

 4
36

 /
 3

 6
16

 /
 3

 4
51

 /
 3

.4

 5
8

 /
2.

5

 1
34

 /
 2

.7

 1
04

 /
 2

.7

 5
5

 /
2.

7

 9
35

 /
 2

.6

 1
01

 /
 2

.4

 1
60

 /
 2

.6

 1
91

 /
 2

.4

 6
75

 /
 2

.8

 8
9

 /
2.

4

 2
39

 /
 2

.4

 4
27

 /
 2

.5

 3
42

 /
 2

.5

 2
31

 /
 2

.6

 2
04

8
 /

2.
3

 3
74

 /
 2

.4

 4
74

 /
 2

.4

 5
46

 /
 2

.4

 2
04

8
 /

2.
4

 4
32

 /
 2

.4

 6
04

 /
 2

.5

 3
82

 /
 2

.4

 3
05

 /
 2

.3

 5
25

 /
 2

.4

 4
29

 /
 2

.5

 2
95

 /
 2

.5

 2
04

8
 /

2.
3

 4
40

 /
 2

.4

 5
42

 /
 2

.4

 6
05

 /
 2

.4

 2
04

8
 /

2.
4

 5
22

 /
 2

.4

 6
88

 /
 2

.4

 4
63

 /
 2

.4

Figure 5: Dedicated and DISE-based feature impact on compression.

4.2 Compression Effectiveness
We begin with a comparison of the compression efficacy of DISE

to that of a previously proposed system that exploits dedicated
decompression-specific hardware [16]. The dedicated approach
does not support parameterized replacement. As a result, it can-
not compress PC-relative branches or share dictionary entries in
certain situations, but it does have smaller dictionary entries (no
directives) and smaller codewords (no parameters), and so it can
profitably compress single instruction sequences.

We separate the impact of these differences in Figure 5. Bars rep-
resent static compression ratio broken down into two components.
The first (the bottom, shaded portion of each stack) is the (normal-
ized) compressed size of the original program text. The second (the
top white portion) is the size of the dictionary as a fraction of orig-
inal program text size. The two numbers written on top of each
bar are the total number of dictionary entries, and the number of
instructions per entry, respectively. Each bar gives the compression
of a decompressor with a slightly different feature set.

Dedicated decompression features. The first bar (dedicated)
corresponds to a dedicated hardware decompressor, complete with
2-byte codewords and single-instruction compression [16]. The
compression ratios achieved—about 70–75% of original text size,
dictionary not included (note the scale of the graph)—are compara-
ble to those previously published [16]. In the next two experiments,
we progressively eliminate the dedicated decompressor’s two ad-
vantages: single-instruction compression (-1insn) and the use of
2-byte codewords (-2byteCW). Eliminating these features, reduces
compression effectiveness to 85%.

DISE decompression features. With dedicated-decompression-
specific features removed, the next three bars add DISE-specific
features. The use of parameterized replacement requires four addi-
tional bytes per dictionary entry to hold the instantiation directives
(+8byteDE). Note, this is a highly conservative estimate as there
are five fields in a given instruction (opcode, three register speci-
fiers, and an immediate) and each can be modified using five or so
different directives. Reserving 32 bits for directives keeps the dic-
tionary section in the executable aligned and provides headroom
for future directive expansion. Without parameterization, larger
dictionary entries require more static instances to be considered
profitable. As a result, fewer of them are selected and compression

ratios degrade to 90% and above. Shown in the fifth bar, parameter-
ization (+3param, we allow three parameters per dictionary entry)
more than compensates for the increased cost of each dictionary en-
try by allowing sequences with slight differences to share entries; it
improves compression ratios dramatically (back down to 75–80%).
The final bar (DISE)—corresponding to the full-featured DISE
implementation—adds the compression of PC-relative branches.
The high static frequency of PC-relative branches enables compres-
sion ratios of 65%, appreciably better than those achieved with the
dedicated hardware scheme.

The numbers on top of the bars—number of dictionary en-
tries and average number of instructions per entry—point to in-
teresting differences in dictionary space usage between the dedi-
cated and DISE schemes. While the two schemes use roughly the
same amount of total dictionary storage, recall that DISE requires
twice the storage per instruction, meaning the DISE dictionaries
contain roughly half the number of instructions as the dedicated
ones. Beyond that, dedicated dictionaries typically consist of a
large number of small entries, including many single-instruction
entries. DISE dictionaries typically consist of a smaller number
of longer entries. The difference is due to the absence of single-
instruction compression—which means that the average compres-
sion sequence length must be at least two—and the use of 4-byte
codewords which require a longer compressed sequences to be
profitable. Parameterized replacement does not increase the aver-
age entry size, it just makes more entries profitable since they can
be shared among more static locations.

Notice, the total number of dictionary entries for the DISE
schemes cannot exceed 2K, since parameterized DISE codewords
contain only 11 bits of RT identifier space.

For the remainder of this evaluation, we present results for a rep-
resentative subset of the benchmarks.

4.3 Sensitivity Analysis
The results of the previous section demonstrate that uncon-

strained (de)compression is effective. Below, we investigate the
impact dictionary entry size (in terms of instructions), total dic-
tionary size, and the number of register/immediate parameters per
dictionary entry.

Dictionary entry size. Post-fetch decompression restricts

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

crafty eon gap parser perlbmk twolf vortex

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

dictionary8 32 128 512 2K 8K unbounded

g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

Figure 6: Impact of dictionary size.

(de)compression sequences to reside fully within basic blocks. Al-
though basic block size is small in the benchmarks we consider,
there may be benefit to restricting dictionary entry size even be-
yond this natural limit. Small blocks may admit more efficient RT
organizations and tagging schemes and can reduce the running time
of the compressor itself. Our experiments (not graphed here) show
that 4-instruction sequences allow better compression (up to 8%)
than 2-instruction sequences, 8-instruction sequences occasionally
result in slightly better compression still, and 16-instruction se-
quences offer virtually no advantage over those. Our algorithm
simply never selects long instruction sequences for compression
because similar long sequences do not appear frequently in the
codes we studied.

Dictionary size. Although DISE virtualization allows the dic-
tionary to be larger than the physical RT, a dictionary whose work-
ing set exceeds RT capacity will degrade performance via expen-
sive RT miss handling. To avoid RT misses, it is often useful to
limit the size of the dictionary, but this naturally degrades com-
pression effectiveness. Figure 6 shows the effect of dictionary size
on compression ratio. Note, we define dictionary size as the total
number of instructions, not the number of entries (i.e., instruction
sequences).

Non-trivial compression, reductions of 1–5% in code size are
possible with dictionaries as small as 8 total instructions, and 12%
reductions are possible with 32-instruction dictionaries (e.g., vor-
tex). 512-instruction dictionaries achieve excellent compression,
70–80% of original program code size on all programs. Increasing
dictionary size to 2K instructions yields small benefits. Only the
larger benchmarks (i.e., eon, perlbmk, and ghostscript) reap addi-
tional benefit from an 8K instruction dictionary.

Number of parameters. Parameterized decompression allows
for smaller, more effective dictionaries, because similar-but-not-
identical sequences can share a single dictionary entry as in Fig-
ure 3. This is a feature unique to DISE; Figure 7 shows its impact.

Compression ratios improve steadily as the number of parame-
ters is increased from zero to three; the difference between zero
and three parameters is about 15% in absolute terms. Compression
improves even further if more than three parameters are used, but
there is little benefit to allowing more than six parameters. This
diminishing return follows directly from our dictionary entry size

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

crafty eon gap parser perlbmk twolf vortex

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

dictionary 0 1 2 3 6 unbounded 6+6byteCW

g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

Figure 7: Impact of parameters.

results. Each instruction contains no more than three registers (or
two registers and one immediate). Since most dictionary entries
are 2–4 instructions long, they cannot possibly contain more than
12 distinct register names or immediate values. Of course, in prac-
tice the number of distinct names is much smaller. Contiguous
instructions tend to be data-dependent and these dependences are
represented by shared register names. Parameterized replacement
therefore has the nice property that a few parameters capture a
significant portion of the benefit. The final bar (6+6byteCW) re-
peats the 6-parameter experiment, but uses longer—6 rather than 4
byte—codewords to realistically represent the overhead of encod-
ing additional parameters. The use of longer codewords makes the
compression of shorter sequences less profitable, completely over-
whelming the benefit achieved by the additional three parameters.
Three parameters—the maximum number that can fit within a 32-
bit codeword and still maintain a reasonably sized RT identifier—
yields the best compression ratios.

Other experiments (not presented) show that parameterization is
slightly more important at small dictionary sizes. This is an in-
tuitive result, as smaller dictionaries place a higher premium on
efficient dictionary space utilization.

4.4 Dictionary Programmability
One advantage of DISE (de)compression is dictionary pro-

grammability, the ability to use a per-application dictionary. Al-
though previous proposals for post-fetch decompression [16] did
not explicitly preclude programmability, a programming mecha-
nism was never proposed and the impact of programmability was
never evaluated. In DISE, dictionary manipulation is performed via
the controller.

We consider the impact of programmability by comparing three
compression usage scenarios. In (application) we create a custom
dictionary for each application and encode it into the executable.
All the data above assumes this scenario. The other two scenarios
assume a fixed, system-supplied dictionary, that either resides in
kernel memory or is perhaps hardwired into the RT. In these sce-
narios, the system provides the compression utility. The first of
these (suite) models a system with a limited but well-understood
application domain. Here, we build a dictionary using static profile
data collected from the other applications in the benchmark suite.

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

crafty eon gap parser perlbmk twolf vortex
512 512 512 512 512 512 5122K 2K 2K 2K 2K 2K 2K

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

custom dictionaryapplication fixed dictionarysuite other-suite

g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc
512 512 512 512 512 512 5122K 2K 2K 2K 2K 2K 2K

Figure 8: Impact of dictionary customization.

The second (other-suite) models a system with little or no a priori
knowledge of the application domain. Here, dictionaries are built
using profile data from programs in the other benchmark suite. One
advantage of system-provided (i.e., fixed) dictionaries is that they
do not consume space in the compressed application’s executable.

Figure 8 shows the impact of each usage scenario on compres-
sion ratio. We actually show the results of two experiments, lim-
iting dictionary size to 512 and 2K total instructions, respectively.
There are two interesting results. Not surprisingly, at small dictio-
nary sizes, an application-specific dictionary (application outcom-
presses a fixed dictionary (suite, other-suite), even when consider-
ing that dictionary space is part of the compressed executable in this
scenario and not the other two scenarios. Being restricted to rela-
tively few compression sequences while limiting the overall cost of
the dictionary to the application places a premium on careful selec-
tion and gives the application scenario an advantage. As dictionary
size is increased, however, careful selection of sequences becomes
less important while the fact that entries in fixed dictionaries are
“free” to the application increases in importance. With a 2K in-
struction dictionary, “inversions” in which an application-agnostic
dictionary outperforms the application-specific one are observed
(e.g., g721, gsm, pegwit). Of course, these are achieved using very
large fixed dictionaries which would not be used if the application
were forced to include the dictionary in its own binary.

Another note is that the suite scenario often outcompresses
other-suite, implying that there is idiomatic similarity within a par-
ticular application domain. For instance, a few of the MediaBench
programs have many floating-point operations whose compression
idioms will not be generated by the integer SPEC benchmark suite.
The one exception to this rule is ghostscript, which arguably looks
more like an integer program—it’s call-intensive in addition to
loop-intensive—than an embedded media program.

4.5 Performance Impact
The performance of a system that uses DISE decompression ef-

fectively depends on the average access times of two caches: the in-
struction cache and the RT, which acts as a cache for the dictionary.
Since each is accessed in an in-order front-end stage, penalties are
taken in series and translate directly into end latency.

32
K

32
K

32
K

32
K

32
K

32
K

32
K

16
K

16
K

16
K

16
K

16
K

16
K

16
K8K 8K 8K 8K 8K 8K 8K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

 (
no

rm
. t

o
32

K
 u

nc
om

pr
es

se
d) SPEC

crafty eon gap parser perlbmk twolf vortex

16
K

16
K

16
K

16
K

16
K

16
K

16
K8K 8K 8K 8K 8K 8K 8K4K 4K 4K 4K 4K 4K 4K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

 (
no

rm
. t

o
16

K
 u

nc
om

pr
es

se
d) MediaBench

unbounded20485121280

g721.dec gsm.toast gsm.untoast jpeg.djpeg ghostscr.gs mpeg2.enc pegwit.enc

1.
96

1.
55

dictionary size:

Figure 9: Impact of instruction cache and dictionary.

The remainder of the evaluation focuses on performance and en-
ergy, variations in which are due to tradeoffs between the instruc-
tion cache and RT.

Instruction cache performance. Figure 9 isolates instruction
cache performance by simulating an ideal DISE engine, an infi-
nite RT with no penalty per expansion. The figure shows the rela-
tive performance of fifteen instruction-cache/dictionary configura-
tions: each of three cache sizes used in conjunction with each of
five (de)compression dictionary sizes—0 (no decompression), 128
entries, 512, 2K, and an unbounded dictionary. We show perfor-
mance (IPC; higher bars are better) normalized to a 32KB instruc-
tion cache with no (de)compression. Of the three components of
average access time—hit time, miss rate, and miss penalty—only
the miss rate concerns us; we fix the miss penalty and ignore the
fact that smaller caches could be accessed in fewer pipeline stages.

While larger dictionaries can improve static compression ratios,
small ones suffice from a performance standpoint. For many pro-
grams, much of the static text compressed by larger dictionaries is
not part of the dynamic working set, and its compression does not
influence effective cache capacity. About half of the programs (e.g.,
gap, parser, and perlbmk) benefit little from dictionaries larger than
128 total instructions, and only crafty and eon show significant im-
provement when dictionary size is increased beyond 2048 instruc-
tions.

Counter-intuitively, compression may hurt cache performance
by producing pathological cache conflicts that did not exist in un-
compressed (or less aggressively compressed) code. This effect is
especially likely to occur at small cache sizes. A prime example
is ghostscript, although not immediately evident from the figure,
on the 8KB and 4KB caches, the 512 instruction dictionary actu-
ally underperforms the 128 instruction dictionary. The pathological
conflict—actually there are two clustered groups of conflicts each
involving 4–5 sets—disappears when the larger, 2K instruction dic-
tionary is used. We have verified that this artifact disappears at
higher associativities (e.g., 8-way). The same effect occurs, but to
a far lesser degree, in gap and twolf. The presence of such artifacts
argues for programmable compression.

DISE engine performance. In contrast with the instruction
cache, we are concerned with all aspects of RT performance. RT

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

0.0

0.2

0.4

0.6

0.8

1.0

1.2
IP

C
 (

no
rm

. t
o

un
co

m
pr

es
se

d/
32

K
 $

) SPEC

crafty eon gap parser perlbmk twolf vortex

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IP
C

 (
no

rm
. t

o
un

co
m

pr
es

se
d/

32
K

 $
) MediaBench

128 512 2K
g721.dec gsm.toast gsm.untoast jpeg.djpeg ghostscr.gs mpeg2.enc pegwit.enc
dictionary size:

Figure 10: Performance impact of RT misses.

hit time is determined by the DISE engine pipeline organization.
The PT and RT are logically accessed in series. In a two-stage
decoder, serial PT/RT access could be hidden with no observed
penalty. However, adding DISE to a single-cycle decoder requires
either an additional pipeline stage which results in a one-cycle
penalty on every mispredicted branch or, if the PT and RT are
placed in parallel in a single stage, a one cycle penalty on every
PT match. Although not shown, the performance of these config-
urations is quite intuitive. The cost of elongating the pipeline is
proportional to the frequency of mispredicted branches in the in-
struction stream, about 0.5–1%. The cost of a one cycle delay per
expansion is proportional to expansion frequency, quite high for
ACFs like (de)compression which make heavy use of DISE. While
the pipelined approach seems less aesthetically pleasing because it
penalizes ACF free code, any system for which heavy DISE use is
anticipated—primarily one for which expansion will be more fre-
quent than branch misprediction—should use it.

The other components of RT access time are miss rate and the
cost of servicing a miss. The RT miss rate is a function of virtual
dictionary working set size and the physical RT configuration, pri-
marily the capacity. RT misses are quite expensive. We model the
RT miss penalty by flushing the pipeline and stalling for 30 cycles.
Figure 10 shows the performance of systems with several virtual
dictionary sizes (128, 512, 2048 instructions) on RTs of several dif-
ferent configurations (128, 512, and 2048 instruction specification
slots arranged in four instruction blocks, both direct mapped and
2-way set-associative). Performance is normalized to the “large
cache” DISE-free configuration, while the DISE experiments all
use smaller caches. For this reason, slowdowns—normalized per-
formance of less than 1—are sometimes observed, especially for
the small physical RT configurations. Since the RT miss penalty is
fixed, performance differences are a strict function of the RT miss
rate.

As the figure shows, a large virtual dictionary on a small physi-
cal RT produces an abundance of expensive RT misses which cause
frequent execution serializations. A 2K-instruction dictionary exe-
cuting on a 128 entry RT can degrade performance by a factor of
5 to 10 (e.g., vortex). Although RT virtualization guarantees cor-

rect execution, to preserve performance, dictionaries should not be
allowed to exceed the physical size of the RT. The instruction con-
flict pathology described in the previous section is again evident in
twolf. On a 2K-instruction RT, the 512-instruction dictionary out-
performs the 2K-instruction dictionary, even though neither gener-
ates RT misses.

The MediaBench programs typically require smaller dictionar-
ies and are more loop oriented than their SPEC counterparts. 2K-
instruction dictionaries are rare even when no limit is placed on
dictionary size, and dictionaries tend to exhibit better RT locality.
As a result, larger dictionaries perform relatively better on small
RTs than in SPEC.

4.6 Energy Implications
In a typical general purpose processor, instruction cache access

accounts for as much as 20% of total processor energy consump-
tion. Other structures, like the data cache and L2 cache, may be
as large or larger than the instruction cache, but are accessed less
frequently (the instruction cache is accessed nearly every cycle),
and typically one bank at a time (all instruction cache banks are
accessed on each cache access cycle). In an embedded processor,
which may contain neither an L2 nor a complex execution engine,
this ratio may be even higher.

Post-fetch decompression can be used to reduce energy con-
sumption, both in the instruction cache and in total. Energy reduc-
tion can come from two sources: (i) reduced execution times due
to compressed instruction footprints and fewer instruction cache
misses, and/or (ii) the use of smaller, lower-power caches. How-
ever, there are two complementary sources of energy consumption
increase. First, the DISE structures themselves consume energy.
Second, the use of a smaller instruction cache may decrease effec-
tive instruction capacity beyond compression’s ability to compen-
sate for it, increasing instruction cache misses and execution time.
These effects must be balanced against one another. The potential
exists for doing so on a per-application basis by selectively pow-
ering down cache ways [2] or sets [23]. A similar strategy can be
used for the RT.

Energy and EDP. Figure 11 shows the relative energy consump-
tions and energy-delay products (EDP) of several DISE-free and
DISE (de)compression configurations. Energy bars are normalized
to total energy consumption of the DISE free system with the larger
(32KB or 16KB) instruction cache, respectively. Each bar shows
three energy components: instruction cache (white), DISE struc-
tures (black), and all other resources (gray). Notice, instruction
cache energy is about 15-25% of total energy in a general purpose
processor and 35-45% in an embedded processor. The EDP for
each configuration is shown as a triangle. There are eight total con-
figurations, uncompressed and compressed with three RT sizes for
each of two instruction cache sizes. Since RT misses have a high
execution time and thus energy cost, we use virtual dictionaries that
are of the same size as the physical RTs.

DISE (de)compression can reduce total energy and EDP even
though the tradeoff between cache and RT instruction capacity
highly favors the cache. In the first place, accessing two 16KB
structures consumes more energy than accessing a single 32KB
structure. Although wordline and bitline power grows roughly
linearly with the number of RAM cells in an array, the power
consumed by supporting structures—wordline decoders, sense-
amplifiers and output drivers—is largely independent of array size.
Multiple structures also consume more tag power. Our simulations
show that a 32KB single-cache consumes only slightly over 40%
more energy per access than a single-ported 16KB cache, not 100%
more. Beyond that, however, an RT is less space efficient than an

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.6

0.8

1.0

1.2

1.4
en

er
gy

 (
no

rm
. t

o
un

co
m

p.
/3

2K
B

) SPEC

32KB 32KB 32KB 32KB 32KB 32KB 32KB16KB 16KB 16KB 16KB 16KB 16KB 16KB
crafty eon gap parser perlbmk twolf vortex

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.4

0.6

0.8

1.0

1.2

1.4

1.6

en
er

gy
 (

no
rm

. t
o

un
co

m
p.

/1
6K

B
) MediaBench

RT i$ other energy-delay product

16KB 16KB 16KB 16KB 16KB 16KB 16KB8KB 8KB 8KB 8KB 8KB 8KB 8KB
g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

energy component:

Figure 11: Impact of compression on energy.

instruction cache because it must store per-instruction instantiation
directives as well. When we combine these factors, we see that in
order to save energy over a 32KB configuration, we must replace
16KB of cache (storage for 4K instructions) with a 3KB RT (stor-
age for 512 replacement instruction specifications). Fortunately,
the use of parameterized replacement enables even small dictionar-
ies to cover large static instruction spaces, making this organization
profitable.

For most benchmarks, the lowest energy (or EDP) configuration
combines an instruction cache with an appropriately sized dictio-
nary and RT. Note, the lowest energy and the lowest EDP are of-
ten achieved using different configurations. In general, DISE is
more effective at reducing EDP than energy, as it trades instruc-
tion cache energy for RT energy. Typical energy reductions are
2-5%, although reductions of 18% are sometimes observed (e.g.,
ghostscript with 16KB instruction cache and 512-instruction dic-
tionary). Without RT misses (recall virtual dictionaries are sized
to eliminate misses), performance improvements due to instruction
cache miss reductions account for EDP reductions which often ex-
ceed 10% (e.g., eon, gap, perlbmk, vortex) and sometimes reach
60% (e.g., ghostscript).

Targeting compression to reduce cache accesses. A third
way to reduce instruction cache energy—and thus total energy and
EDP—is to reduce the number of instruction cache accesses. Con-
ventional static compression attempts to reduce instruction cache
misses by compressing sequences that appear frequently in the
static text. Dynamic compression attempts to reduce cache accesses
by compressing sequences that appear frequently in the dynamic
execution stream. Our compression algorithm easily builds dy-
namic compression dictionaries. It simply weighs each instruction
sequence in a compression profile by an incidence frequency taken
from some dynamic execution profile. In Figure 12, we repeat our
experiment using dynamic dictionaries. By greatly reducing in-
struction cache power, especially for larger dictionaries, dynamic
(de)compression provides more significant reductions in both en-
ergy and EDP. 10% energy reductions are common (e.g., eon, gap,
vortex, ghostscript, gsm) as are 20% EDP reductions. Note, the ad-
ditional EDP reduction comes from the corresponding energy re-
duction, not from a further reduction in execution time.

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.6

0.8

1.0

1.2

1.4

en
er

gy
 (

no
rm

. t
o

un
co

m
p.

/3
2K

) SPEC

32KB 32KB 32KB 32KB 32KB 32KB 32KB16KB 16KB 16KB 16KB 16KB 16KB 16KB
crafty eon gap parser perlbmk twolf vortex

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.4

0.6

0.8

1.0

1.2

1.4

1.6

en
er

gy
 (

no
rm

. t
o

un
co

m
p.

/1
6K

B
) MediaBench

RT i$ other energy-delay product

16KB 16KB 16KB 16KB 16KB 16KB 16KB8KB 8KB 8KB 8KB 8KB 8KB 8KB
g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

energy component:

Figure 12: Impact of dynamic code compression on energy.

5. RELATED WORK
The large body of work on code compression speaks to the im-

portance of the technique.
Software-based approaches. Traditional static optimizations

intended to accelerate execution (e.g., dead-code elimination, com-
mon sub-expression elimination, register allocation, etc.) often
have the side effect of reducing code size [8]. We use an opti-
mized uncompressed baseline in our experiments. Code factor-
ing replaces common instruction sequences with calls to proce-
dures containing these sequences. Factoring reduces code size at
the expense of increased execution time due to function call over-
head [6, 8]. ISA extensions have been proposed to reduce this over-
head [19].

Non-executable compressed formats permit more aggressive
compression but require an explicit and expensive decompres-
sion step before execution. Systems have been proposed for de-
compressing code at the procedure [13] and cache-line granulari-
ties [17]. Although effective in reducing code size, the performance
of these systems degrades significantly.

ISA extensions. Certain ISAs (e.g., ARM’s Thumb [1] and
MIPS16 [14]) support compact code via short-form versions of
commonly used instructions. Although there is no significant
overhead in decompression itself, performance suffers because the
short formats provide a limited register and opcode menu, in-
creasing the number of instructions in short format regions (mode
switches are required between short and 32-bit code regions). Fur-
thermore, dense instruction encodings do not exploit repetition of
code sequences like coarse-granularity (i.e., multiple instruction)
(de)compression schemes. Dense encodings and coarse-granularity
(de)compression mechanisms are orthogonal and can be used in
conjunction.

Hardware-based approaches. Fill-path decompression is a
hardware technique in which compressed code in memory is de-
compressed by the instruction cache fill unit on a miss. Exam-
ples of fill-path decompression include the Compressed Code RISC
Processor (CCRP) [22] and IBM’s CodePack [12]. Although fill-
path decompression schemes necessitate no processor core modi-
fications and incur decompression cost only on instruction cache

misses, they often use sequential and computationally expensive
compression techniques (e.g., Huffman), resulting in significant
runtime overhead. In addition, they store uncompressed code in
the instruction cache, so the cache does not benefit from a com-
pressed image and the hardware must map uncompressed addresses
to compressed ones. Finally, the unit of compression is limited to
the cache line, so individual instructions (or bytes) must be com-
pressed rather than instruction sequences.

DISE performs post-fetch decompression, allowing the instruc-
tion cache to store compressed code while maintaining a single
static (compressed) image which does not require address transla-
tion structures. Implementations of post-fetch dictionary decom-
pression using custom hardware has been previously proposed.
One such system [16] uses a very large dictionary (up to 8K entries,
each consisting of one or more instructions) and 16-bit codewords
(which admit the compression of single instructions) to achieve im-
pressive code size reductions on PowerPC binaries. Another post-
fetch decompression system [18] uses variable length codewords
and dictionary-based compression of common instructions (not in-
struction sequences). Our implementation uses general-purpose
hardware, a small dictionary, and supports both parameterized and
programmable decompression. Although not a fundamental limita-
tion of DISE, our scheme currently uses only 32-bit word-aligned
codewords.

Operand factorization [3] extends post-fetch decompression.
Building on the observation that compressing whole instructions—
i.e., opcodes and operands together—limits the efficacy of a com-
pression algorithm, operand factorization compresses opcodes (tree
patterns) and operands (operand patterns) separately. After fetch,
tree and operand patterns are decompressed and reassembled to
form machine instructions. Operand factorization is effective for
very large dictionaries. Via register/immediate parameterization,
DISE supports a limited form of operand factoring within the
framework of an existing mechanism.

6. CONCLUSION
Code (de)compression is an important tool for architects of both

embedded and general purpose microprocessors. In this paper, we
present an implementation of dynamic code decompression based
on dynamic instruction stream editing (DISE), a programmable de-
coding facility that allows an application’s instruction fetch stream
to be transformed in a general way to add functionality to the orig-
inal program [7]. A DISE implementation of (de)compression
has many advantages. It implements post-fetch decompression,
allowing the instruction cache to benefit from a compressed pro-
gram image and removing the need for mechanisms for translat-
ing uncompressed addresses to compressed ones. DISE’s matching
and parameterized replacement functionality supports parameter-
ized (de)compression, enabling better dictionary space utilization.
DISE’s programming interface also allows individual applications
to exploit custom (de)compression dictionaries. DISE’s most com-
pelling advantages, however, have to do with the fact that DISE
itself is an essentially existing mechanism that has nothing to do
with decompression as such. The core DISE engine consists of
well-studied and highly efficient structures that already exists in
current processors. The DISE mechanism has many applications
beyond code decompression, making its inclusion in a system de-
sign easier to justify, and allowing decompression to be composed
with other added functionality.

Our experiments using cycle-level simulation of the MediaBench
and SPEC2000 integer benchmarks show that DISE enables code
size reductions of 25% to 35% and performance improvements of
5-20%. In addition, we evaluate the decompression features unique

to DISE, and we find that parametrization and programmability
provide significant compression advantages. Parametrization im-
proves code compression by up to 20% and solves the problems
associated with compressing PC-relative branches. Application-
customized dictionaries enable better compression than a fixed dic-
tionary built to support a large number of applications. Finally, we
show that DISE-based compression can reduce total energy con-
sumption by 10% and the energy-delay product by as much as
20%.

7. ACKNOWLEDGMENTS
The authors thank Vlad Petric for his help with the energy sim-

ulations and the anonymous reviewers for their comments. Amir
Roth is supported by NSF CAREER award CCR-0238203.

8. REFERENCES
[1] Advanced RISC Machines Ltd. An Introduction to Thumb,

Mar. 1995.
[2] D. Albonesi. Selective cache ways: On demand cache

resource allocation. In Proc. 32nd International Symposium
on Microarchitecture, pages 248–259, Nov. 1999.

[3] G. Araujo, P. Centoducatte, and M. Cortes. Code
compression based on operand factorization. In Proc. 31st
International Symposium on Microarchitecture, pages
194–201, Dec. 1998.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proc. 27th International Symposium on
Computer Architecture, pages 83–94, Jun. 2000.

[5] D. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Technical Report 1342, University of
Wisconsin–Madison Computer Sciences Department, 1997.

[6] K. Cooper and N. McIntosh. Enhanced code compression for
embedded RISC processors. In Proc. of the ACM SIGPLAN
’99 Conference on Programming Language Design and
Implementation, pages 139–149, 1999.

[7] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A
programmable macro engine for customizing applications. In
Proc. 30th International Symposium on Computer
Architecture, Jun. 2003.

[8] S. K. Debray, W. Evans, R. Muth, and J. D. Sutter. Compiler
techniques for code compression. ACM Transactions on
Programming Languages and Operating Systems,
22(2):378–415, Mar. 2000.

[9] K. Diefendorf. K7 challenges Intel. Microprocessor Report,
12(14), Nov. 1998.

[10] P. Glaskowsky. Pentium 4 (partially) previewed.
Microprocessor Report, 14(8), Aug. 2000.

[11] L. Gwenapp. P6 microcode can be patched. Microprocessor
Report, 11(12), Sept. 1997.

[12] T. M. Kemp, R. K. Montoye, D. J. Auerback, J. D. Harper,
and J. D. Palmer. A decompression core for PowerPC. IBM
Systems Journal, 42(6):807–812, Nov. 1998.

[13] D. Kirovski, J. Kin, and W. Mangione-Smith. Procedure
based program compression. In Proc. 30th International
Symposium on Microarchitecture, pages 204–213, Dec.
1997.

[14] K. Kissell. MIPS16: High-Density MIPS for the Embedded
Market. Silicon Graphics MIPS Group, 1997.

[15] C. Lee, M. Potkonjak, and W. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing

multimedia and communications systems. In Proc. 30th
International Symposium on Microarchitecture, pages
330–335, Dec. 1997.

[16] C. Lefurgy, P. Bird, I.-C. Cheng, and T. Mudge. Improving
code density using compression techniques. In Proc. 30th
International Symposium on Microarchitecture, pages
194–203, Dec. 1997.

[17] C. Lefurgy, E. Piccininni, and T. Mudge. Reducing code size
with run-time decompression. In Proc. 6th International
Symposium on High-Performance Computer Architecture,
pages 218–227, Jan. 2000.

[18] H. Lekatsas, J. Henkel, and W. Wolf. Code compression for
low power embedded system design. In Proc. 36th Design
Automation Conference, pages 294–299, Jun. 2000.

[19] S. Liao, S. Devadas, and K. Keutzer. A
text-compression-based method for code size minimization
in embedded systems. ACM Transactions on Design

Automation of Electrical Systems, 4(1):12–38, Jan. 1999.
[20] T. Szymanski. Assembling code for machines with span

dependent instructions. Communications of the ACM,
21(4):300–308, Apr. 1978.

[21] S. Wilton and N. Jouppi. An enhanced access and cycle time
model for on-chip caches. Technical report, DEC Western
Research Laboratory, 1994.

[22] A. Wolfe and A. Chanin. Executing compressed programs on
an embedded RISC architecture. In Proc. 25th International
Symposium on Microarchitecture, pages 81–91, Dec. 1992.

[23] S.-H. Yang, M. Powell, B. Falsafi, and T. Vijaykumar.
Exploiting choice in resizable cache design to optimize
deep-submicron processor energy-delay. In Proc. 8th
International Symposium on High Performance Computer
Architecture, Jan. 2002.

