
Making the Fast Case Common and the Uncommon Case
Simple in Unbounded Transactional Memory

Colin Blundell

University of Pennsylvania
blundell@cis.upenn.edu

Joe Devietti

University of Pennsylvania
devietti@cis.upenn.edu

E Christopher Lewis ∗

VMware, Inc.
lewis@vmware.com

Milo M. K. Martin

University of Pennsylvania
milom@cis.upenn.edu

Abstract
Hardware transactional memory has great potential to simplify the
creation of correct and efficient multithreaded programs, allowing
programmers to exploit more effectively the soon-to-be-ubiquitous
multi-core designs. Several recent proposals have extended the
original bounded transactional memory to unbounded transactional
memory, a crucial step toward transactions becoming a general-
purpose primitive. Unfortunately, supporting the concurrent execu-
tion of an unbounded number of unbounded transactions is chal-
lenging, and as a result, many proposed implementations are com-
plex.

This paper explores a different approach. First, we introduce the
permissions-only cache to extend the bound at which transactions
overflow to allow the fast, bounded case to be used as frequently as
possible. Second, we propose ONETM to simplify the implementa-
tion of unbounded transactional memory by bounding the concur-
rency of transactions that overflow the cache. These mechanisms
work synergistically to provide a simple and fast unbounded trans-
actional memory system.

The permissions-only cache efficiently maintains the coherence
permissions—but not data—for blocks read or written transaction-
ally that have been evicted from the processor’s caches. By holding
coherence permissions for these blocks, the regular cache coher-
ence protocol can be used to detect transactional conflicts using
only a few bits of on-chip storage per overflowed cache block.

ONETM allows only one overflowed transaction at a time, re-
lying on the permissions-only cache to ensure that overflow is in-
frequent. We present two implementations. In ONETM-Serialized,
an overflowed transaction simply stalls all other threads in the
application. In ONETM-Concurrent, non-overflowed transactions
and non-transactional code can execute concurrently with the over-
flowed transaction, providing more concurrency while retaining
ONETM’s core simplifying assumption.

Categories and Subject Descriptors
C.1.4 Computer Systems Organization [Processor Architectures]:
Parallel Architectures
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1. Introduction
Transactional memory systems have been proposed to ameliorate
the challenges of lock-based multithreaded programming [15].
Memory transactions are segments of code that execute atomically
and in isolation, thus providing a synchronization mechanism
similar to locks but with a more declarative interface. Fourteen
years ago, Herlihy and Moss proposed an elegant and efficient
hardware implementation of transactional memory [13]. This im-
plementation allows transactions to execute concurrently, detecting
conflicts at cache-block granularity and aborting transactions on
conflicts to achieve isolation. Their implementation is simple in
design as they leverage the existing on-chip caches and cache
coherence protocol. Unfortunately, this implementation limits the
volume of data that a transaction can access (to the size of a small
on-chip cache) and does not allow transactions to survive a context
switch, limiting the utility of transactions as a general-purpose
synchronization primitive.

Recently, several proposals have emerged to provide unbounded
hardware transactions by using the above implementation for trans-
actions that do not overflow their on-chip resources or encounter
an interrupt, while using a different hardware mechanism to handle
the overflowed case (e.g., [1, 7, 24]). These proposals support over-
flowed transactions with the same concurrency as non-overflowed
transactions.

Unfortunately, these systems do not have simple implementa-
tions. As in the bounded case, they track the data that is associated
with each transaction (for logging) and each memory block (for
conflict detection). The size of the former depends on the num-
ber of memory references that can appear in a transaction, and
the size of the latter can in the worst case be equal to the num-
ber of concurrently-executing transactions; in these systems, both
quantities can be unbounded. To detect conflicts, a processor tra-
verses the per-memory-block structure, and on a commit or abort, a
processor traverses the per-transaction structure. Although various
caching structures have been proposed to reduce the frequency of
these traversals, the logic to maintain and manipulate them must
still be implemented.

We take a different approach to unbounded hardware trans-
actional memory. First, we propose a hardware mechanism, the
permissions-only cache, that can be incorporated into many ex-
isting proposals to reduce the rate at which less-efficient overflow
handling mechanisms are invoked. Second, because it is likely that
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overflowed transactions will be rare, our proposal does not support
unbounded concurrency among them, admitting a simpler imple-
mentation. Together, these two aspects of our proposal make the
fast case common and the now-uncommon case simple.

To reduce the rate at which transactions overflow, we exploit
the fact that the information necessary for performing conflict
detection can be encoded in the coherence permissions of
transactionally-accessed cache blocks; the data is not necessary.
The permissions-only cache thus maintains only coherence
permissions for transactionally-accessed blocks. The size re-
duction allows us to achieve a 256:1 compression ratio; e.g.,
a 4-KB permissions-only cache can track up to a megabyte of
transactionally-accessed data. Furthermore, dynamically allocating
second-level cache frames for this purpose allows for transactions
that have the potential to access hundreds of megabytes (as
opposed to tens of kilobytes) without overflowing.

We also propose ONETM, a simple hardware-based ap-
proach for handling overflows by bounding concurrency among
overflowed transactions. We explore two implementations.
ONETM-Serialized revisits serialization as a viable approach for
realizing overflowed transactions by stalling all other threads in an
application when one transactions overflows. A similar mechanism
was part of the original TCC proposal [12]. However, the concept
has lost favor because (1) their implementation did not allow
overflowed transactions to explicitly abort, and (2) serialization is
unappealing when overflow is frequent. We present a serialization
scheme that allows overflowed transactions to abort and relies on
the permissions-only cache to ensure that overflow will be the
uncommon case.

Although serialization may be sufficient if overflow is van-
ishingly rare, it may not be appropriate for all circumstances.
ONETM-Concurrent provides more concurrency than ONETM-
Serialized by allowing bounded transactions and non-transactional
code to execute concurrently with a single overflowed transaction.
The implementation for ONETM-Concurrent remains simple be-
cause it avoids the complex structures used to track an unbounded
amount of state per memory block and retains simple commit and
abort operations.

The next section describes a baseline bounded hardware
transactional memory implementation. Section 3 introduces the
permissions-only cache. Section 4 surveys some recent hardware-
based unbounded transactional memory proposals. Section 5
presents ONETM. Section 6 experimentally evaluates ONETM,
and Section 7 elaborates on additional related work.

2. Baseline Bounded Transactional Memory
This section describes the bounded hardware transactional memory
system that we use as our baseline. The baseline implementation
supports transactions that are bounded in terms of duration (i.e.,
cannot survive context switches) and volume of data that may be
accessed. This implementation of bounded transactions is similar
to the original hardware transactional memory proposal [13] that
many unbounded transactional memory proposals build upon.

Conflicts between transactions and other code are detected via
the cache coherence protocol. Each block of each processor’s pri-
vate level-one data cache is augmented with two bits that record
whether the block has been read or written within a transaction
(called the transactional read and write bits, or just read and write
bits for short). These bits interact with a standard invalidation-
based cache coherence protocol to detect conflicts (i.e., when two
transactions have accessed the same memory block and at least one
access is a write), which require one of the conflicting transactions
to be aborted (or stalled [21]).

Our baseline system uses in-place updates and LogTM-style
logging [21] to distinguish architected and speculative state (i.e.,
state updated in a transaction).1 Before a speculative store up-
dates memory, the block’s address and old value are written to
a transaction-private log mapped into the thread’s virtual address
space. To avoid logging the same memory block multiple times,
log updates are elided when the write bit associated with the block
is already set, indicating that it has previously been logged.

In-place updates allow efficient commits. When a transaction
commits, the read and write bits in the cache are simply flash
cleared (committing the speculative data to the state of the ma-
chine), and the log is discarded by restoring the log pointer to the
beginning of the log buffer. When a transaction aborts, the system
iterates over the log entries in hardware or software, restoring each
block. After the log has been restored, the processor flash clears the
in-cache read and write bits.

This implementation supports only bounded transactions be-
cause the cache-based mechanism for conflict detection limits both
the volume of data that may be accessed within a transaction and
the duration of a transaction. Data access volume is limited because
cache lines cannot be evicted (otherwise read and write bits would
be lost, preventing the detection of subsequent conflicts with the
evicted data). Duration is limited because the in-cache read and
write bits implicitly belong to the currently executing transaction.
This implementation has no mechanism for transferring read and
write bits from the cache to architected state, and so it must abort
transactions on a context switch. Note that the logging mechanism
bounds neither aspect of transaction execution.

Recent work has sought to support hardware-based transac-
tional execution that imposes no spatial or temporal bounds [15].
For blocks that do not overflow on-chip state, many of these pro-
posals use the efficient mechanism described above; for blocks that
overflow on-chip state, such proposals use other higher-overhead
mechanisms (see Section 4 for examples). In the next section, we
describe a mechanism that efficiently tracks a much larger amount
of conflict detection information on-chip, helping to ensure that
these overflow mechanisms are rarely needed.

3. Making the Fast Case Common
In this section we introduce a mechanism, the permissions-only
cache, that reduces the frequency with which transactions over-
flow on-chip resources. The permissions-only cache allows a trans-
action to access more data than can be buffered on-chip without
transitioning to a higher-overhead overflowed execution mode. The
permissions-only cache efficiently tracks transactional read and
write bits for blocks that have been replaced from the processor’s
data cache by retaining coherence permissions—but not data—for
these blocks. Only when the permissions-only cache itself over-
flows does the system need to fall back on some other mechanism
for detecting conflicts for overflowed blocks. Overflowed blocks
can then be managed using one of the many previously proposed
schemes (e.g., [1, 7, 8, 10, 14, 21, 24]) or one of the implementa-
tions we propose in Section 5.

3.1 Operation
The permissions-only cache tracks conflict information for blocks
that have exceeded the capacity of the data cache. It is organized
as a tagged, set-associative structure that contains a read bit and a
write bit per entry. Its efficient data-less encoding of coherence per-
missions is similar to the Store Miss Accelerator [6], which retains

1 In contrast, the original hardware transactional memory proposal
buffered speculative state in a special cache [13].
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exclusive coherence permission to evicted blocks. The permissions-
only cache is (1) read by external coherence requests as part of con-
flict detection, (2) updated when a transactional block is replaced
from the data cache, (3) invalidated on a commit or abort, and (4)
read on transactional store misses to avoid redundantly logging the
block (i.e., if the write bit was already set in the permissions-only
cache, logging would be redundant). Thus, the permissions-only
cache is off the critical path of accessing the first-level data cache.
Moreover, the permissions-only cache need not be accessed at all
for processor-local memory operations.

Just as external coherence requests check the read and write
bits in the data cache to detect conflicts, external requests also
check the bits in the permissions-only cache (performed in parallel
with the data cache lookup). When a block’s write bit is set in the
permissions-only cache, the local coherence state of the block is
clean-exclusive without data; when only the read bit is set, the state
is shared without data. Externally, these states are indistinguishable
from the traditional clean-exclusive (E) and shared (S) coherence
states. Existing protocols commonly allow silent replacement of S
and E blocks, and thus already implicitly support these new states.

When a transactional block is replaced from the data cache, the
processor sets the appropriate read/write bits in the permissions-
only cache, allocating an entry if necessary. If the replaced data
cache block was dirty (modified), the block is written back to
the second-level cache or memory; non-dirty (clean) blocks are
silently discarded. Dirty blocks may safely escape because any
remote read to these addresses will conflict with the transactional
write bit in the permissions-only cache, preventing any access
to the block until the subsequent abort has successfully restored
the pre-transactional value. On a transaction commit or abort,
the permissions-only cache is cleared by flash-invalidating all its
blocks. The permissions-only cache is often empty (and thus need
not be searched); in these circumstances, it can be completely
powered down to save dynamic and static power.

3.2 Efficient Encoding
Because the permissions-only cache does not contain data, it can
more efficiently encode the transactional read/write bits (just a few
bits per block) than other on-chip caches that hold data as well
as addresses. A naive implementation of a permissions-only cache
would incur the overhead of a full cache tag for each two-bit en-
try. However, by using sector cache techniques [16] this tag over-
head can be reduced dramatically. A 512-bit (i.e., 64-byte) entry
per tag would provide for 256 two-bit sectors (containing a read
bit and a write bit). A single 256-sector entry maps a contigu-
ous 16KB region of memory (256 sectors × 64B cache lines), a
256-to-1 compression ratio in the best case. In the worst case of
poor spatial locality, a 4KB permissions-only cache would track
the read/write bits for only 4KBs of blocks. However, with good
page-level spatial locality, a 4KB permissions-only cache allows a
transaction to access up to 1MB of data without overflow. Figure 1
shows the indexing and organization of a 4KB 256-sector direct-
mapped permissions-only cache.

To support even larger transactions without overflow, instead of
using a dedicated structure, the processor can dynamically share
the second-level cache’s storage capacity by allowing second-level
cache frames to contain either data or an array of read/write bits.
A second valid bit—a permissions-only valid bit—is added to each
entry’s cache tag to indicate when the frame holds transactional
read/write bits. When a transactional block is replaced from the
data cache, its transactional read/write bits are updated in the cor-
responding bits in the second-level cache’s data array (replacing
and allocating another entry as needed). On a commit or abort of
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Figure 1. A 4KB 256-sector permissions-only cache.

a transaction, all the read/write bits are discarded by flash-clearing
the permissions-only valid bits. For shared second-level caches, an
additional core identifier field is associated with each cache frame
containing permissions data.

When external coherence invalidations query the second-level
cache, the cache tags are accessed twice. The first tag lookup is
the normal lookup, but it will match only for frames that hold
data blocks (by checking the permissions-only valid bit). The sec-
ond tag lookup—which uses the sector cache indexing similar to a
stand-alone permissions-only cache—checks for matching frames
of read/write bits. When a tag hit occurs on a tag for a frame of
read/write bits, the data array is accessed to query the correspond-
ing bit (sector) to detect conflicts. If no permissions-only blocks
have been allocated in the second-level cache, the second lookup is
skipped.

With such an organization, a 4MB second-level cache with 64-
byte blocks can hold enough permissions-only information to al-
low a transaction to access up to 1GB of data (64K entries of 256
read/write bit pairs and each entry maps 16KBs) without overflow.

3.3 Discussion
By efficiently tracking transactions’ read and write sets, the
permissions-only cache increases the size of transactions that can
successfully complete without invoking an overflowed execution
mode, largely independent of the particular scheme used to
handle overflows. A permissions-only cache would likely provide
little benefit to LogTM [21], which uses a sticky state at the
memory to support lightweight gradual cache overflow. However,
the reduction in the frequency of overflows may reduce the
runtime overheads of other previously proposed hardware-based
unbounded transactional memory schemes (e.g., [1, 24]). A
permissions-only cache could also extend the in-cache tracking of
blocks used by hardware-assisted software transactional memory
proposals (e.g., [25, 26]) or hybrid hardware/software transactional
memory proposals (e.g., [8, 10, 14]).

With a sufficiently large permissions-only cache, the occurrence
of overflowed transactions will likely be rare. In Section 5 we ex-
plore an approach for handling overflows that is enabled by this
assumption. Before describing our proposed techniques, we review
how some prior approaches for hardware-based unbounded trans-
actional memory handle overflows.
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4. Background on Unbounded Hardware TM
To provide basis for later comparison, this section describes three
hardware-based unbounded transactional memory proposals that
precisely detect conflicts at the cache block granularity: UTM [1],
VTM [24], and PTM [7]. We defer discussion of XTM [8], a hard-
ware/software proposal that uses the virtual memory system to
manage overflows, as well as LogTM-SE [31] and Bulk [5], two
signature-based proposals, until Section 7.

4.1 UTM
UTM [1] was the first transactional memory proposal to support un-
bounded transactions (in both size and duration). UTM maintains
its transactional state in a single, shared, memory-resident data
structure called the xstate. The xstate structure contains (1) logs for
each active transaction to record read and written addresses and the
original data values at the written addresses, and (2) for each block
in memory, a read/write bit and a linked list of pointers into the
log entries for that block. New versions of transactionally-written
blocks are stored in-place (i.e., UTM uses eager version manage-
ment [21]). On an overflow, a processor adds an entry to its log, op-
tionally walking the list of entries for the overflowing block to avoid
redundant logging. Conflicts are detected by first inspecting the RW
bit; if that bit signals a conflict, the transaction walks the linked list
associated with the block to determine whether other transactions
have accessed the block (i.e., whether there is actually a conflict).
An aborting transaction walks its list of accesses, destroying the log
and reverting memory state. A committing transaction traverses the
list of accesses to clean up the log. The xstate structure may be
concurrently updated and read by multiple threads.

4.2 VTM
VTM [24] tracks overflowed transactional state using a shared data
structure mapped into the virtual address space (called the XADT).
Entries in the XADT are allocated when blocks overflow the cache.
Much like UTM’s xstate, VTM’s XADT uses linked lists and sup-
ports accessing all entries for a specific virtual memory block or all
entries for a specific transaction. XADT operations include concur-
rently adding an entry on overflow, looking up an entry for a block,
committing a transaction, aborting a transaction, and saving state
on context switches. Each transactional load or store miss checks
for conflicting transactional accesses before it completes. Unlike
UTM, VTM buffers speculative updates in the XADT itself, prop-
agating these updates only when a transaction commits (i.e., VTM
uses lazy version management [21]).

To reduce expensive walks of the XADT, VTM introduces two
caching mechanisms. First, VTM introduces a counting-Bloom-
filter-based table (the XF) accessed on cache misses to quickly
rule out conflicts with other transactions. Only when the XF in-
dicates a potential conflict must the processor walk the XADT. The
XF is mapped into the virtual memory space, shared among all
threads, and accessed with cacheable loads and stores; as such, the
XF can create overheads due to coherence sharing misses. Second,
VTM employs another table, the XADC, to cache XADT entries
for blocks that have been accessed by the current transaction.

On commit, VTM walks all the XADT entries for the transac-
tion, copies the non-committed values into the memory, updates
the shared XF, and deallocates and unlinks the XADT entries. Al-
though non-transactional loads and stores do not normally need to
check the XADT/XF, they must do so when a transaction is com-
mitting. An abort similarly walks the list of entries for the aborting
transaction; this walk can be done in the background.

On a context switch, VTM walks the cache and overflows any
transactionally read or written blocks. As updating the XADT re-

quires virtual addresses and most caches are physically tagged,
VTM’s cache is augmented with virtual address tags. When a trans-
action is swapped back in after a context switch, all of the val-
ues read by that transaction are validated by comparing the current
value of the block with the value previously read by the transaction
for the block, requiring the buffering of both reads and writes.

4.3 PTM
PTM [7] supports unbounded transactional memory by associating
state with physical addresses at the block granularity but allo-
cating/reallocating this shadow state on a per-page basis. PTM’s
shadow pages behave similarly to UTM’s log pointers, except
PTM’s Transaction Access Vector (TAV) lists track data for an
entire page. Like both UTM and VTM, the transactional state data
structure supports iterating over all entries associated with both
a particular memory location and a particular transaction. PTM
simplifies data logging by making the observation that because
only one transaction can be writing a block at a time (because of
its use of eager conflict detection), one shadow copy for each block
is the maximum ever needed.

In PTM, all of the transactional state is maintained and accessed
at the memory controller during cache misses. The memory con-
troller is responsible for all conflict detection, updating transac-
tional state, and aborting/committing transactions. To avoid per-
forming a list walk of TAVs on each cache miss, PTM employs
a TAV summary cache at the memory controller (different from,
but analogous to VTM’s XF). When a cache block overflows the
cache, it is the memory controller that is responsible for recording
the original and overflowed value.

On commit, the memory controller walks and updates all of
the TAVs for the transaction and updates the summary vectors.
Abort is similar, but the controller copy-restores the original values.
The proposal also describes an optimized version in which non-
speculative blocks can reside in either the home or shadow page,
with a bit vector specifying which page has the non-speculative
copy of each block. In this version, the memory controller toggles
the bits for transactionally-accessed blocks on commit but does not
have to copy-restore blocks on abort (it still walks the TAV list
for the transaction to free its entries, however). Between the time
a transaction logically commits and completes clearing its transac-
tional state, the transaction is marked as committed, signaling that
conflicts due to the committing transaction can be ignored.

To avoid overflowing all transactional blocks on a context
switch, PTM associates a transaction identifier with each block in
the cache. However, the PTM proposal assumes that the in-cache
transaction identifiers are cleared in the case when a transaction
resumes execution and commits on another processor, but does not
explain how that is done.

4.4 Discussion
These three proposals require the hardware to dynamically allo-
cate/deallocate, maintain, and concurrently manipulate complex
link-based structures (UTM’s xstate, VTM’s XADT, and PTM’s
Transaction Access Vectors) and the corresponding cached
versions of these structures. Manipulating and accessing these
structures can add overhead to both overflowed transactions
and concurrently-executing non-overflowed transactions, which
need to access these structures to perform conflict detection.
More importantly, the hardware for correctly manipulating these
structures is not simple.

In the previous section, we described how the permissions-only
cache can be employed to optimize the performance of these pro-
posals. However, the knowledge that overflows will likely be rare
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Figure 2. An example execution on three systems handling overflowed transactions in different ways. The white bars represent non-
overflowed transactions, the dark gray bars overflowed transactions, and the straight lines non-transactional execution. A light gray
color means that the processor is stalled. In this execution, there are no conflicts, and the same amount of useful work is performed
on each system.

also allows us to consider new design points for handling over-
flows that trade off performance for simplicity. In the next section,
we describe two such systems built around the idea of bounding
concurrency of overflowed transactions.

5. Making the Uncommon Case Simple
We propose ONETM, a transactional memory system in which only
a single overflowed transaction per process can be active at a time.
The principal advantage of this design is that the implementation
is relatively simple. The impact of the concurrency restrictions on
overall system throughput is small because the permissions-only
cache ensures that overflows will be the uncommon case.

This section describes two instantiations of ONETM. In
ONETM-Serialized, overflowed transactions serialize the system
(while retaining the ability to abort). In ONETM-Concurrent,
any number of non-overflowed transactions (as well as non-
transactional code) are permitted to execute concurrently with
the single overflowed transaction. In Figure 2, we illustrate the
differences in concurrency between these implementations as well
as a system that places no concurrency restrictions on overflowed
transactions (such as the systems described in the previous
section).

5.1 ONETM-Serialized
Our first implementation revisits the idea of serialization of over-
flowed transactions first proposed in TCC [11]. Our serialized im-
plementation simply stalls all other threads in an application when
one of the threads needs to execute an overflowed transaction, as il-
lustrated in Figure 2b (threads executing non-transactionally must
stall to maintain strong atomicity [2]). Unlike the original TCC
proposal, however, overflowed transactions still support an explicit
abort operation because overflowed transactions continue to log.

To transition to overflowed execution, the processor must en-
sure that no other thread in the application is executing in over-
flowed mode. Exclusivity of overflowed execution is achieved via
the shared (per-process) transaction status word (STSW), which
resides in a fixed location in the virtual address space of each pro-

cess. The STSW contains an overflowed bit, which is set while any
thread in the application is executing an overflowed transaction.
This bit acts much like a mutex lock on overflowed execution. A
transaction may only transition to overflowed execution after it has
atomically changed the bit from unset to set. If it finds the bit set,
the processor must stall (i.e., spin until the overflow bit is unset) or
alert the operating system to schedule another thread/process. Fi-
nally, when an overflowed transaction commits, it unsets the over-
flowed bit in the STSW. The fields of the STSW are summarized in
Figure 3a; the OTID field will be introduced in Section 5.2.2.

To serialize execution during overflow, all threads in the appli-
cation that are not executing an overflowed transaction must moni-
tor the overflowed bit in the STSW and stall if it is set; they resume
only when the bit is unset (as illustrated in Figure 2b). The STSW
can be coherently cached in a special register to make these checks
inexpensive. Conflicts between the overflowed transaction and an-
other (stalling) thread are resolved in favor of the overflowed trans-
action; if an overflowed transaction is context-switched out, the
other threads continue to stall on the overflowed bit in the STSW.
STSW accesses are not part of a transaction’s read or write sets, so
updates to the STSW never cause conflicts.

In addition to the STSW, each thread in the system has a pri-
vate (per-thread) transaction status word (PTSW). The PTSW
is an architected machine register (i.e., it persists across context
switches because the operating system saves and restores this reg-
ister along with all the other architected registers). The PTSW con-
tains an overflowed bit (set only when the current thread is exe-
cuting an overflowed transaction) and a transaction nesting depth
(TND) field. The TND field is used to implement the subsumption
of nested transactions (i.e., nested transaction initiation and com-
mit are treated as no-ops, except for the manipulation of the TND
field). Because the PTSW persists across context switches and mi-
grations, a thread will not forget that it is executing an overflowed
transaction nor the nesting depth of the current transaction. The
fields of the PTSW are summarized in Figure 3b; the no-user-abort
field will be introduced in Section 5.5.

Although this implementation is simple, the price of its sim-
plicity is the loss of all concurrency when a transaction overflows,
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which will have a significant negative impact on performance if
overflows are frequent. Although the addition of the permissions-
only cache can substantially reduce overflows (and thus the per-
formance ramifications of serializing on overflow), we next pro-
pose an implementation that allows concurrent execution of non-
overflowed transactions, non-transactional code, and a single over-
flowed transaction while remaining relatively simple.

5.2 ONETM-Concurrent
In order to allow other code to execute concurrently with a sin-
gle overflowed transaction (Figure 2c), we introduce per-block per-
sistent transaction metadata as part of the architected state. The
system uses this metadata to track the read and write set of the
single overflowed transaction; other threads then check the meta-
data to detect conflicts. To efficiently provide this metadata, each
cache-block-sized block of physical memory is augmented with
additional bits; these bits are the overflowed equivalents of the
read/write bits described in Section 2. When the overflowed trans-
action writes (reads) a block, it sets the overflowed metadata write
(read) bit. Non-overflowed transactional and non-transactional ac-
cesses detect conflicts with the overflowed transaction by inspect-
ing these bits. A single set of bits per memory block is sufficient
because there can be only one overflowed transaction at a time.

We next describe the use and manipulation of the metadata, fol-
lowed by a description of how it can be efficiently set and cleared.

5.2.1 Metadata Operation
The additional storage for the metadata is implemented in the mem-
ory controllers. Each memory controller allocates a fixed-sized re-
gion in its physical memory to store the metadata associated with
its remaining addressable memory. If we allocate two bytes (two
bits indicating transaction read and write and a 14-bit identifier to
be described later) for each 64-byte block, this represents only a
3% memory overhead.

The per-block metadata is part of the system’s architected state,
existing both in caches (in addition to transactional read/write bits
used by non-overflowed transactions) and memory. As the metadata
is logically associated with every block of data, the metadata trav-
els with the data anytime the data block is transferred (e.g., cache
misses, responses from memory, cache-to-cache data transfers, and
cache evictions). When responding to a cache miss, the memory
controller provides both the data and metadata bits from the mem-
ory in parallel.2 Although this metadata increases the size of the
data payload, the coherence protocol itself need not change, and
thus no special logic is required to communicate and manage the
metadata. Non-overflowed transactions check for conflicts by sim-
ply examining the overflowed metadata of a cache block after they
have brought the block into their cache.

When a transaction overflows, it transitions to overflowed ex-
ecution mode. A simple way to accomplish this transition is to
abort the transaction and restart it in overflowed mode after en-
suring that no other thread in the application is already executing
in overflowed mode (as described in Section 5.1). This is the spe-
cific implementation that we evaluate in Section 6. Alternatively,
ONETM-Concurrent can avoid an abort by more gracefully tran-
sitioning to overflowed mode. As before, the processor must first
ensure that no other thread in the application is executing in over-
flowed mode. Next, the processor walks both the data cache and the
permissions-only cache to set the overflowed metadata for blocks

2 As the memory access path is wider than two bytes, the memory
controller caches the rest of the data read, reducing memory traffic
by exploiting spatial locality in the reference stream.

(a) Shared Transaction Status Word (STSW)
Located at a fixed address in virtual memory known to all threads

STSW Field Description
overflowed? is there a current overflowed transaction?

OTID ID of current overflowed transaction

(b) Private Transaction Status Word (PTSW)
Per-thread architected register, saved/restored on context switches

PTSW Field Description
overflowed? is this thread in an overflowed transaction?

TND nesting depth of current transaction
no-user-abort? disables logging, allows IO

Figure 3. Description of transaction status words.

read or written by the transaction; this action ensures that the con-
flict detection information for these blocks is not lost if the over-
flowed transaction is context switched. As a further optimization,
the processor could update the metadata gradually as blocks over-
flow the caches and defer the metadata updates for non-overflowed
blocks until a context switch actually occurs.

5.2.2 Lazy Metadata Clearing
When an overflowed transaction commits or aborts, we would con-
ceptually like to clear all metadata that the transaction has set. How-
ever, the number of blocks with non-zero overflowed transactional
metadata is unbounded, and such blocks could be in any cache,
memory module, or even swapped to disk. As such, it is not possi-
ble to easily clear all the overflowed transactional metadata.

Instead of actively clearing the metadata, the system clears
the metadata lazily by using an overflowed transaction identifier
(OTID) to differentiate between stale and current metadata. The
per-block metadata is extended to hold an OTID (the 14-bit
identifier mentioned earlier) that is updated anytime the meta-
data read/write bits are set. The OTID of the active overflowed
transaction is also stored in the STSW (see Figure 3a), allowing
all processors to fetch the current OTID by executing a coherent
read request to its location. When a transaction transitions to
overflowed mode, it increments the OTID in the STSW. Instead
of explicitly clearing the metadata bits when it completes, the
overflowed transaction simply clears the overflowed bit in the
STSW as before.

A processor checks for conflicts by checking the metadata as
described above; the processor elides this check if the overflowed
bit in the PTSW is set or the overflowed bit in the STSW is not set.
If the processor detects a possible conflict, it then proceeds to check
whether the OTID associated with the conflicting memory block is
equal to the currently active OTID (by reading the STSW). If the
IDs do not match, the processor proceeds without stalling or abort-
ing (i.e., the metadata is stale). If the IDs match, a conflict exists
and the requesting processor stalls until the overflowed transaction
clears the STSW’s overflowed bit during commit. While a proces-
sor is stalling, another conflict can cause its transaction to abort.

If OTIDs were never reused, this approach would avoid the need
to ever clear the metadata. However, the OTID width is finite and
small. As a result, OTIDs will eventually wrap around, creating the
potential for false conflicts and unnecessary delay. Such false con-
flicts can occur only when (1) an overflowed transaction is active
(otherwise the metadata is ignored) and (2) the thread attempting
the access is not executing in overflowed mode. The stall due to the
false conflict will be temporary, because once the active overflowed
transaction completes it clears the overflowed bit in the STSW, thus
un-stalling the victim of the false conflict.
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To reduce false stalls, the processor opportunistically clears
stale overflowed transaction metadata whenever possible. When-
ever a processor not executing an overflowed transaction writes a
cache block, it clears the associated metadata. Thus, as long as a
block has been written since the last time the current OTID was
used, no false conflicts will occur on that block. The metadata can
also be cleared whenever a processor manipulates a cache block in
which the current OTID does not match the block’s OTID. Lazily
clearing metadata does not impact correctness or forward progress;
it is only a performance optimization.

5.2.3 Lazily Coherent Metadata
Although the metadata can be kept exactly coherent by requiring a
processor to have write permission to a block to modify its meta-
data, such a requirement causes unnecessary invalidations of blocks
in shared state (and thus transaction conflicts) when only the meta-
data needs to be modified, and also inhibits the efficient lazy clear-
ing of metadata.

Instead, we would like a processor executing an overflowed
transaction to be able to set the metadata without needing exclu-
sive permissions to the block. As there is only one active over-
flowed transaction at a time, there will be at most a single writer
(even if there are multiple readable copies in the system). However,
to prevent out-of-order writebacks from overwriting more recent
metadata with stale metadata, the system allows only the owner of
the block (non-exclusive or exclusive) to set the metadata. Many
cache coherence protocols already include the notion of a single
non-exclusive read-only dirty owner (the “O” state [28]) that is
responsible for writing back the block to memory upon eviction.
Once the metadata has been written, it is the owner’s responsibility
to ensure the data is eventually written back to memory (or transfer
the ownership, and thus the responsibility, on to another proces-
sor). Some protocols already support a non-dirty owner as part of
determining which processor responds with data during a shared-
intervention [18, 29]. In protocols that grant non-exclusive owner
status to the most recent requester, whenever a processor in an over-
flowed transaction requests a block, it will be able to set the read
bit immediately after the miss completes.

The key to the correctness of this lazy updating of metadata is
that the system guarantees that any new requests for the block re-
ceive the most recent version of the metadata. Once an overflowed
transaction has set the read bit (and thus has the block in owned
state), any other processor that tries to write the block will issue
a cache request and receive the most recent version of the meta-
data, indicating the conflict. Processors will only set the write bit
when they are writing the block, in which case they have exclu-
sive permissions to it; thus, any subsequent read or write will again
receive the most recent copy of the metadata and detect the con-
flict. Any processor can clear the metadata opportunistically as de-
scribed above; if the processor owns the block, then its clearing of
the metadata will propagate to other processors.

5.2.4 Example Execution
Figure 4 illustrates the lazy coherence and clearing of metadata. At
time t1, processor P1 loads the block A into its cache; at that time,
there is no overflowed transaction executing and the metadata for A
is /0. At t2, P0 overflows, setting the overflowed bit of the STSW and
incrementing the OTID. At t3, P0 loads A into its cache in owned
state and sets the read bit for A, as well as writing its OTID into the
OTID metadata field for A. P1 now has stale metadata in its cache,
but there is no conflict. At t4, P2 loads A into its cache; because
P0 owns A, it supplies the data (and metadata) to P2. Again, there
is no conflict. At t5, P3 requests A in modified state; as the owner,

p0 p1 p2 p3

stall

STSW

{No, #7}

{Yes, #8}

{No, #8}

{Overflow?, OTID}

O:{ø}

O:{R, #8}

M:{R, #8}

S:{ø}
S:{R, #8}
I: I: I:

O:{R, #8}

M:{ø}

Ld A

Ld A

Ld A
St A

t1
t2
t3
t4
t5
t6
t7

Figure 4. Example illustrating lazy coherence and clearing of
metadata in ONETM-Concurrent. The white bars are non-
overflowed transactions, the dark gray bars are overflowed
transactions, the straight lines are non-transactional execution,
and the light gray color indicates stalled execution. The exam-
ple centers around a memory block with address A; the text to
the right of each processor is that processor’s MOESI coher-
ence state and local metadata for A.

P2 supplies P3 with the data. P3 now stalls, because the read bit
of A is set and the STSW indicates that the OTID of the active
overflowed transaction matches the OTID in the metadata of A. At
t6 P0 commits its overflowed transaction, clearing the overflowed
bit of the STSW. A short time later, P3 sees that the overflowed bit
of the STSW is now clear and unstalls itself to perform its write of
A. It also opportunistically clears the metadata of A at this point.
Because P3 has A in modified state, it will ensure that its version of
the metadata for A is given to anyone requesting A in the future.

5.3 Forward Progress
When a conflict occurs, a transaction must abort (or the request may
be stalled [21]). The overflowed transaction is always the highest-
priority transaction (i.e., it will survive any conflict). A conflict be-
tween the overflowed transaction and a non-transactional access
will stall the non-transactional access until the overflowed trans-
action commits. Thus, once a transaction has transitioned to over-
flowed mode, it will not abort due to conflicts (although it can abort
at the explicit request of the software). If a transaction fails to make
progress for any reason (e.g., repeated aborts due to conflicts or in-
terrupts), it arbitrates to become the overflowed transaction (thus
ensuring forward progress).

5.4 Operating System Issues
On a context switch, a processor executing an overflowed transac-
tion need not perform any special operations in either of our two
implementations. In ONETM-Serialized, all other threads in the
application will remain stalled until the overflowed transaction is
swapped back in and completes. In ONETM-Concurrent, the meta-
data ensures that all other threads will detect conflicts with the over-
flowed transaction, even when it is not running.

Our designs require minimal support from the operating system.
The operating system must save and restore the PTSW register as
part of thread state. ONETM-Concurrent requires support for the
overflowed metadata as well: when swapping pages to and from
disk, the operating system must save and restore the associated
metadata and OTIDs (as implemented in other systems [9, 27]).
The operating system may optionally clear metadata and OTIDs
when zeroing pages before reallocation.
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5.5 Exposing the Highest Priority Transaction
Because an overflowed transaction is given highest priority in
ONETM, after a transaction transitions into overflowed mode it
will not abort unless explicitly instructed to do so by the software.

We can expose the concept of the highest-priority (overflowed)
transaction to the software in two ways. First, if the compiler can
guarantee through static analysis that the program will never ex-
plicitly ask for a transaction to be aborted (e.g., via a language-
level transactional abort), the software may mark the transaction
as not needing support for explicit abort (for example, by setting a
no-user-abort bit in the PTSW; see Figure 3b). If such a transac-
tion transitions to overflowed mode, it can stop logging (and avoid
the associated overheads) because it will never abort: neither due
to conflicts (because overflowed transactions have highest conflict-
resolution priority) nor software requests.

Second, although many common system calls and I/O may
be handled via input/output buffering, compensation actions [4],
and/or transactional OS interfaces, some operations are not eas-
ily handled within a transaction (e.g., sending a network request
and receiving its response). To handle cases in which a transaction
wants to perform a non-transactional system call and can guaran-
tee that a user abort will not occur, the runtime system can tran-
sition the transaction into overflowed mode with the no-user-abort
bit set. As the transaction will then never abort, programs can rely
on this property to, for example, perform arbitrary system calls or
input/output within the transaction [3].

5.6 Qualitative Complexity Comparison
The complexity of ONETM-Concurrent compares favorably with
that of the UTM, VTM and PTM proposals discussed in Section
4. To detect conflicts in the worst case, the three latter schemes
walk a linked list of unbounded size. In ONETM-Concurrent, the
conflict detection is direct and inexpensive, because the metadata
bits travel with the data. On a commit of an unbounded transaction,
ONETM merely clears the STSW bit. VTM traverses the linked list
of updates that the transaction has made to propagate these updates
to memory. UTM and PTM walk the linked list of updates in order
to deallocate it. On aborts, all systems (including ONETM) walk
the list of accesses made by the transaction. ONETM, however,
walks a thread-local log (requiring no synchronization) whereas the
other schemes walk a shared data structure.

The price that ONETM pays for the above simplifications is, of
course, a limit on concurrency for overflowed transactions. In the
previous section, we argued that the addition of the permissions-
only cache can neutralize this cost. In the next section, we evaluate
this claim quantitatively via full-system simulation.

6. Experimental Evaluation
This section evaluates the performance and scalability of our pro-
posal. It examines both the performance impact of our concurrency
restrictions on overflowed execution and of our permissions-only
cache, finding the former to be small and the latter large.

6.1 Simulator and Benchmarks
We use Virtutech Simics [17] and a memory hierarchy simula-
tor based on GEMS [19] that simulates our proposed transactional
memory systems. The simulator models an in-order, one-IPC x86
processor and a bus-based memory hierarchy. Figure 5a presents
the configuration parameters.

Our evaluation workload consists of a subset of the SPLASH-
2 benchmark suite [30] and a binary tree microbenchmark. The
benchmarks and inputs are summarized in Figure 5b. The ray-

Parameter Value
Processor eight in-order x86 cores, 1 IPC
L1 cache 64 KB, 4-way set associative, 64B blocks

L1 miss latency 10 cycles
L2 cache 4 MB, 4-way set associative, 64B blocks

L2 miss latency 200 cycles

(a) Simulated machine configuration

Program Input
barnes input-2K

cholesky tk14.O
ocean-non-contiguous n130

radix n262144 r1024
raytrace teapot.env
volrend head-scaleddown2

water-spatial input-512
tree-<n> n% scanning

(b) Benchmark summary

Figure 5. Machine and benchmark summary.

trace opt benchmark removes a frequently executed, but unneces-
sary, critical section from raytrace. We created transactional ver-
sions of these benchmarks by replacing lock acquires and releases
with, respectively, transaction begins and ends.3 The lock-based
versions of the benchmarks use ticket locks handcrafted in x86 as-
sembly to avoid the overhead of POSIX locks. We compiled the
benchmarks using GCC 4.1.0 with the optimization flag -O3.

We use a binary tree microbenchmark to evaluate transactions
with larger memory footprints than those found in SPLASH-2. The
binary tree is 11 levels deep, and threads access the tree in a ran-
dom mixture of (1) transactional lookup and single-node update
and (2) transactional read scans of a randomly-selected contiguous
subset of the values in the tree. This benchmark is parameterized
by the division of execution time between these two operations.
For example, in tree-45, 45% of uniprocessor execution is spent in
read scans.

6.2 Performance
Figure 6 presents the execution time (normalized to a serial pro-
gram) for the benchmarks on eight processors. For now, ignore
the striped bars. The left-most bar (labeled “idealized”) represents
an idealized unbounded transactional memory system in which
conflict detection is free and concurrency is unlimited for over-
flowed transactions. Any unbounded transactional memory strives
to match the performance of this system. The light and dark gray
bars represent our two proposed systems, ONETM-Concurrent and
ONETM-Serialized, respectively. Finally, the black bar (labeled
“locks”) represents a lock-based implementation of each bench-
mark. Note that there are no lock-based bars for the tree-n bench-
marks because they are so synchronization-heavy that performance
is either overwhelmed by locking overhead (when fine-grained
locks are used) or serialized (when coarse-grained locks are used).

In the SPLASH-2 benchmarks ONETM-Concurrent and
ONETM-Serialized track the idealized unbounded transaction
memory (the leftmost bar), because the transactions in these
benchmarks require little overflowed execution. The tree-n bench-
marks, on the other hand, do make use of overflowed execution.
Despite the occurrence of overflowed transactions, for small

3 We recognize that such a conversion from locks to transactions is
not always safe [2].
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Figure 6. Performance of ONETM implementations on eight processors versus an idealized, no-overhead unbounded transactional
memory.
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Figure 7. Scalability analysis using the tree-10% microbenchmark.

scanning percents (i.e., tree-10), ONETM-Concurrent suffers little
slowdown (versus the idealized system) and ONETM-Serialized
suffers from a surprisingly modest slowdown. As the scanning
percent grows, so does the likelihood that two threads require
concurrent overflowed transaction, and both schemes suffer versus
the idealized case. Naturally, ONETM-Concurrent degrades more
slowly than ONETM-Serialized.

Next consider the striped bars in Figure 6. These bars represent
ONETM-Concurrent and ONETM-Serialized with a permissions-
only cache. We augment both systems with a 1KB permissions-
only cache, allowing each system to reference up to 256KB before
overflowed execution is necessary. Almost all of the overhead of
ONETM-Concurrent and ONETM-Serialized is eliminated by the
introduction of the permissions-only cache (i.e., overflowed execu-
tion becomes sufficiently rare that the performance impact of the
one-at-a-time limitation becomes negligible).

6.3 Scalability
To explore the scalability of the proposed implementations, Fig-
ure 7 shows the impact on performance of the tree-10 benchmark as
the number of processors in the system is varied. Execution times
are normalized to the idealized case in each bar group. These re-
sults show that systems without the permissions-only cache suf-
fer increasing overhead with larger numbers of processors, because
a greater number of processors increases the likelihood that any
given processor is executing an overflowed transaction at any given
time. ONETM-Concurrent is more resilient to this effect because it
does not serialize all threads in the benchmark, but it still exhibits
significant slowdowns as processor count increases. However, the
introduction of a permissions-only cache significantly reduces the

rate of overflowed transactions, so the performance of both im-
plementations is similar to the idealized implementation. Without
the permissions-only cache, even the single-processor case exhibits
slight slowdowns due to overheads of transitioning to overflowed
execution mode.

6.4 Results Summary
These results show that allowing only one overflowed trans-
action at a time can result in performance competitive with an
ideally concurrent implementation. For larger multiprocessors or
processors with high-demand transactional workloads, however,
the performance of ONETM-Concurrent suffers versus the ideal
unbounded transactional memory. The addition of even a small
permissions-only cache closes the gap for our benchmarks. More-
over, the permissions-only cache also equalizes the performance
of ONETM-Serialized with that of the ideal in our experiments,
suggesting that even serialization may be a viable implementation
option when combined with the permissions-only cache.

7. Additional Related Work
This section describes some additional work in transactional mem-
ory as well as related work from the area of speculative synchro-
nization.

LogTM-SE [31], a concurrently-developed proposal, and Bulk
[5] use signatures for conflict detection rather than using differ-
ent strategies for bounded and overflowed cases. A signature is a
finite-length, conservative representation of a transaction’s read and
write sets that admits memory block aliasing. In LogTM-SE, con-
flict detection piggybacks on the cache coherence protocol: on an
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incoming cache coherence request, the processor checks the signa-
ture to see if there is a conflict. The system summarizes the sig-
natures of all swapped-out transactions in a single signature. One
difference between signature-based approaches and both ONETM
implementations is that signature-based approaches may incur false
conflicts due to signature aliasing, but they allow full concurrency
of overflowed transactions; in contrast, both ONETM implementa-
tions track conflicts exactly (albeit at a cache-block granularity) but
limit applications to one overflowed transaction at a time. In addi-
tion, Bulk differs from our proposals in that it provides lazy (versus
eager) conflict detection.

XTM [8] uses bounded transactions when possible and uses the
virtual memory hardware to implement overflowed transactions.
When a thread begins an overflowed transaction, it is given a private
page table with restricted access so that the system can track trans-
actional memory operations at the page granularity via exceptions.
Memory updates cause shadow pages to be allocated, and conflicts
are detected at commit time by checking that no other thread has
updated a shadowed page. Our permissions-only cache could be
employed to optimize the performance of XTM. One difference
between XTM and ONETM is that XTM has an involved commit
operation for overflowed transactions whereas ONETM has sim-
ple commit operations at the price of restricting applications to one
overflowed transaction at a time.

Speculative Lock Elision [22] and Transactional Lock Re-
moval [23] provide concurrent execution of lock-protected regions
of a program by speculatively ignoring lock acquisition and
executing optimistically (detecting conflicts and rolling back).
These systems support transaction overflow and I/O by falling
back on actually acquiring the lock associated with a locked
region of code. This approach is similar to ONETM, albeit with a
lock-based interface rather than the more powerful global serial-
ization semantics of our proposal. A significant difference is that
ONETM-Concurrent does not prevent non-overflowed transactions
from making progress (unless there is an actual conflict). Our
approach is also reminiscent of Speculative Synchronization’s
“safe thread” approach for ensuring forward progress [20].

8. Conclusion
Many unbounded transactional memory schemes separate transac-
tional execution into a fast bounded mode and a slower overflowed
mode. We introduced the permissions-only cache, which eases the
memory-footprint restrictions imposed by the bounded execution
mode of the processor. This structure permits bounded transac-
tions to access potentially hundreds of megabytes (rather than tens
of kilobytes) before overflowing. The permissions-only cache can
be introduced into both hardware-only and hardware-software pro-
posed systems to make the fast case more common.

We also proposed ONETM, an unbounded transactional mem-
ory system that assumes overflowed transactions will be rare to
simplify the implementation. Specifically, we limit the number of
overflowed transactions that may exist in an application at a time
to one. By bounding concurrency among overflowed transactions,
ONETM avoids the complexity of managing and traversing linked
data structures in hardware, admitting simple conflict detection and
transaction commit.

Our experimental evaluation demonstrates that the permissions-
only cache can significantly reduce the use of overflowed execu-
tion and that ONETM can obtain performance that is comparable
to an idealized unbounded transactional memory system. Our re-
sults indicate that the combination of the permissions-only cache
and the simplified overflowed execution mode of ONETM repre-
sents a practical design point for unbounded transactional memory
systems.
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