
at
e
re

ets
ri-
sor
the
e.

ot
to

nd
the
’s
al

.

lly

en
of
we

c-
s.

e
s of
E

on
.

e
SE
ss
d

-
ac-
ted
e.
ny

ine
n
-
g
a-
ng

DISE: A Programmable Macro Engine for Customizing Applications

Marc L. Corliss, E Christopher Lewis and Amir Roth
Department of Computer and Information Science

University of Pennsylvania
{mcorliss,lewis,amir}@cis.upenn.edu
Abstract
Dynamic Instruction Stream Editing (DISE)is a coopera-

tive software-hardware scheme for efficiently adding customiza-
tion functionality—e.g, safety/security checking, profiling,
dynamic code decompression, and dynamic optimization—to an
application. In DISE, application customization functions
(ACFs) are formulated as rules for macro-expanding certain
instructions into parameterized instruction sequences. The pro-
cessor executes the rules on the fetched instructions, feeding the
execution engine an instruction stream that contains ACF code.
Dynamic instruction macro-expansion is widely used in many of
today’s processors to convert a complex ISA to an easier-to-exe-
cute, finer-grained internal form. DISE co-opts this technology
and adds a programming interface to it.

DISE unifies the implementation of a large class of ACFs
that would otherwise require either special-purpose hardware
widgets or static binary rewriting. We show DISE implementa-
tions of two ACFs—memory fault isolation and dynamic code
decompression—and their composition. Simulation shows that
DISE ACFs have better performance than their software coun-
terparts, and more flexibility (which sometimes translates into
performance) than hardware implementations.

1. Introduction
The diversification of computing platforms (server, worksta-

tion, laptop, handheld, etc.) has increased the role ofapplication
customization functions (ACFs), utilities that customize the exe-
cution of an application for a particular environment. Examples
of ACFs include safety checking (mobile code), profiling and
dynamic optimization (high performance processors), dynamic
code decompression (embedded processors), and bug-patching in
the field (unfortunately, all processors). Considerable research
effort has been devoted to implementing ACFs in both hard-
ware—on dedicated, potentially programmable pipeline stages—
and software—by embedding ACF code into an application as
additional instructions, often via binary rewriting. The two
approaches have complementary strengths and weaknesses.
Hardware implementations contribute little or no overhead to the
application but are functionally rigid. Even programmable
designs are restricted by the number of stages, their positioning
in the pipeline, and the basic operations they perform. Software
implementations are functionally rich but degrade application
performance. The additional instructions effectively reduce both
instruction cache capacity and pipeline throughput. In addition,
the binary rewriting process itself exacts a fixed cost that con-
strains the granularity at which ACFs can be profitably used.

Dynamic instruction stream editing (DISE)is a collabora-
tive software-hardware approach to implementing ACFs, one th
combines the flexibility of software implementations with som
of the performance benefits of hardware ones. In DISE, ACFs a
formulated as dynamic instruction stream transformations, s
of rules (macros) for replacing instructions that match certain c
teria with parameterized instruction sequences. The proces
executes the rules on the application’s fetch stream, feeding
execution engine an instruction stream that includes ACF cod
Code insertion prior to execution enables ACFs that modify, n
just observe, application behavior and allows the processor
dynamically allocate execution resources between ACF a
application code. Code insertion after fetch sidesteps many of
costs of statically embedding ACF code into the application
static image. Using instructions to implement ACFs is gener
and eliminates the need for specialized hardware widgets.

DISE is a single facility that unifies two classes of ACFs
Transparent ACFsact on unmodified “out-of-the-box” or “off-
the-wire” executables by redefining the semantics of “natura
occurring” instructions.Aware ACFs act on modified applica-
tions into which specially constructed codewords have be
planted by a DISE-aware static rewriting tool; the semantics
these codewords is defined by the DISE rules. In this paper,
show DISE formulations of two ACFs.Memory fault-isolation
is a transparent ACF that is implemented by defining fault dete
tion replacement rules for loads, stores, and indirect jump
Dynamic code (de)compressionis an aware ACF that is imple-
mented by defining expansions for frequently occurring cod
sequences. The binary is compressed by replacing instance
those sequences with DISE codewords. At runtime, DIS
expands the codewords, recreating the original instructi
stream. We also show dynamic composition of ACFs via DISE

We evaluate DISE using cycle-level simulation of th
SPEC2000 integer benchmarks. Our results show that DI
memory fault isolation degrades application performance le
than the corresponding binary rewriting implementations (an
this is without accounting for the initial cost of the rewriting pro
cess itself). DISE code (de)compression yields compression f
tors and speedups competitive with those possible via dedica
decompressors, and without decompression specific hardwar

Decoder-based instruction macro-expansion is used in ma
CISC (e.g., IA32) processors to present the execution eng
with a finer-granularity, easier-to-execute RISC-like instructio
stream [10, 12, 14, 15]. DISE perform a logically different func
tion—it adds functionality to an executing program by insertin
additional ISA instructions—but uses similar hardware mech
nisms. DISE co-opts this technology and adds a programmi
Appears inProceedings of the Thirtieth International Symposium on Computer Architecture, June 2003.

C

e-
SE
a

.

ds
ion

ion

m
us
-
i-
e,
c

s

s-
on
st
-
p-
es

w
n
ns
o
av
on

. A
e,
ute
t-
ir

f-
e
)

ar
a

e
,

-
ns
ers
gis-
rs
us
l-
ks
d.”
nt
nt

lt
ci-
eci-
nce
r)

gal,
al

ce

e-

al
e

ce-

s
de.
ith
ore
ter
he-
o
ties
r
-
he
ry
od-
interface to it. In processors that already contain CISC-to-RIS
decoders, DISE may also co-opt the physical structures.

The rest of the paper is organized as follows. Section 2 pr
sents the DISE mechanism itself and Section 3 describes DI
ACF implementations. Section 4 contains a performance evalu
tion. The final sections summarize related work and conclude

2. DISE
DISE inspects every fetched instruction and macro-expan

those that match specified criteria. We call the macro-expans
rulesproductions. A production is composed of apattern speci-
fication and a replacement sequence specification. A fetched
instruction that matches a pattern is called atrigger. DISE
replaces the trigger with areplacement sequencewhich is
formed by combining the replacement sequence specificat
with information (i.e., bits) from the trigger.

DISE has two major components. Theengine applies the
productions to the fetch stream. Thecontroller implements the
interface between the DISE engine and the rest of the syste
This section describes the DISE engine and controller. We foc
primarily on functionality. However, since the engine is perfor
mance critical—it inspects every fetched instruction—we ded
cate a subsection to exploring its implementation. At this tim
we are less concerned with the implementation and performan
of the controller which is invoked only when the production
themselves are manipulated (i.e., rarely).

2.1. Engine Functionality

The DISE engine is a native-to-native expander that tran
forms the instruction stream in peephole fashion, one instructi
at a time, each expansion physically independent of the re
However, even with these restrictions—which simplify the pro
gramming model and the hardware implementation—DISE su
ports the formulation of many interesting ACFs. Three featur
help in this regard:parameterized replacement, adedicated reg-
ister space, andreplacement-sequence control flow. The utility
of parameterized replacement is obvious. The latter two allo
individual replacement sequences to perform complex tasks a
to synthesize global behavior by linking independent expansio
via persistent register communication. They also relieve tw
headaches associated with software ACF implementations: sc
enging registers from the application and retargeting applicati
branches around inserted ACF fragments.

Matching and replacement.DISE’s basic operation is
instruction pattern matching and parameterized replacement
pattern specification may include any combination of opcod
opcode class, logical register names, immediate field or attrib
thereof (e.g., its sign). For example, DISE is able to specify pa
terns of the form ‘‘loads that use the stack-pointer as the
address register’’ or ‘‘conditional branches with negative of
sets.’’ Currently, patterns are only defined on instruction bits. W
leave open the possibility of matching other attributes (e.g., PC

To enable interesting ACFs, replacement sequences
parameterized. Each replacement instruction field comes with
directive that (optionally) instantiates it using a field from th
trigger. Different fields have different directives. For instance
register fields have five possible directives:literal , dedicated ,
.

e

.

d

-

.
e

T.RS, T.RT, andT.RD. The literal directive means the register num
ber is to be interpreted literally. The dedicated directive mea
that the register number is one of the DISE dedicated regist
(see next sub-heading). The last three directives cause the re
ter number to be replaced with one of three register numbe
from the trigger. Opcode and immediate fields have analogo
directives. Parameterization permits transformations like the fo
lowing: “replace loads with a sequence of instructions that mas
the upper bits of the address and then performs the original loa
We havefound uses for non-instruction attributes in replaceme
(e.g., the ability to encode the trigger’s PC in a replaceme
instruction immediate is useful in profiling ACFs [8]).

Figure 1 shows productions that implement memory fau
isolation (described in Section 3.1). There are two pattern spe
fications, one matches loads, the other stores. Both pattern sp
fications are associated with the same replacement seque
specification,R1. The sequence extracts the segment (high-orde
bits from the address register, checks that the segment is le
branches to an error handler if it is not, and executes the origin
instruction otherwise. The full fault isolation implementation
uses a third production to match all indirect jumps and repla
them with a sequence similar toR1 that compares the target reg-
ister’s segment bits to the application’s legal text segment.

Parameterization is used in two places. In the first replac
ment instruction, we extract the segment bits fromT.RS, the
address register of the trigger. The final instruction is the origin
trigger itself,T.INSN. The remaining instruction components ar
literals (e.g.,srli, 26) or dedicated registers (e.g.,$dr1). The right
side of Figure 1 shows a fetched store instruction and the repla
ment sequence that is executed in its place (t0 replacesT.RS, the
entire store replacesT.INSN).

Dedicated registers.Replacement instructions can acces
dedicated registers that are not accessible via application co
The dedicated register set provides individual expansions w
temporary register storage without having to save and rest
user registers. More importantly, it provides persistent regis
storage across expansions allowing global ACFs to be synt
sized from local expansions, without requiring the compiler t
reserve user registers for the communication. These proper
simplify ACF formulations and reduce their runtime cost. Fo
example, in Figure 1,$dr2 is a dedicated DISE register that con
tains the current application’s legal data segment identifier. T
ACF initializes this register, which is subsequently used in eve
replacement sequence. The application has no direct way to m
ify this register.$dr1 is used for temporary (scratch) storage.

Replacement sequence semantics.To simplify ACF pro-
-

FIGURE 1. Memory fault isolation in DISE

Memory Fault Isolation (MFI)
P1: T.OPCLASS == store ->R1
P2: T.OPCLASS == load ->R1

R1: srli T.RS, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
T.INSN

Fetch Stream
stq a0, 8(t0)

Execution Stream
srli t0, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
stq a0, 8(t0)

c-
nd

nd
ed
as
—

s
.
-
in
r

ing
e
ap-

ur
are
le
E
r-

de-
ed
a

nt
nd
ed
ts to
dis-

-
er-
are
a-
an

n

on-
r-

d-
w
,
ed
t

lly,
c-

st
ruc-
gramming, we define the semantics of replacement sequences to
resemble and complement those of conventional (i.e., applica-
tion) instruction sequences. First, we define precise state at
replacement instruction boundaries, allowing replacement
sequences to use a standard interrupt model. Second, we provide
a two-level control model that allows replacement sequences to
include control transfers but requires each replacement sequence
to appear to be fully contained within the trigger it replaces. In
other words, control can be transferred either at the application
instruction level (the conventional way) or completely within a
single dynamic replacement sequence; one dynamic replacement
sequence cannot jump into the middle of another.

We formalize these definitions via a state element called the
DISEPC, a program counter that acts at the replacement
sequence level. Every dynamic instruction is tagged with a
PC:DISEPC pair. For an application instruction, DISEPC is 0.
For a replacement instruction, PC is the trigger’s PC and DIS-
EPC is its offset from the start of the replacement sequence.

Precise state is defined at each PC:DISEPC boundary. If
instruction PC:DISEPC is interrupted, post-handler fetch restarts
at PC:DISEPC. The fetch engine ignores the DISEPC compo-
nent, fetching the application instruction at PC. The DISE engine
recognizes the annotation and expands the replacement sequence
starting at DISEPC, skipping the first DISEPC–1 instructions.

The PC:DISEPC pair also creates the two-level control
model by allowing replacement instructions to change either the
PC or DISEPC, but not both. Application branches transfer con-
trol at the application instruction level, change the PC only (their
target DISEPC is implicitly 0), and are in general oblivious to the
presence of DISE. For control transferswithin a replacement
sequence, DISE provides variants of branches and jumps that
modify the DISEPC only. A replacement sequence may contain
both application (conventional) and DISE (sequence internal)
branches. DISE also allows replacement sequences to include
function calls, a useful feature for implementing complex ACFs.

The semantics of application branches within replacement
sequences are subtle. The basic question is whether post-branch
replacement instructions belong to the branch’s taken or non-
taken path. The answer is neither; they belong to the branch’s
predictedpath and are squashed if the branch ismispredicted.
These semantics seem odd but follow a simple logic and mesh
with the way superscalar control flow operates. There are two
cases of interest. If the branch is the trigger—i.e., an application
branch that was expanded into a sequence in which it was not the
last instruction—then it was initially predicted and the replace-
ment sequence instructions that follow it must be associated with
its predicted path or else the correct-path application instructions
that follow it will also need to be squashed. While allowing the
contents of the instruction stream to depend on branch prediction
is strange, we must remember that this behavior only occurs for
productions that match branches and place them in themiddleof
the resulting replacement sequences. Such productions should
not be used if this behavior is not desired. If the branch is not the
trigger—it simply appears in a replacement sequence for some
other instruction—then it was never predicted. Since a non-pre-
dicted branch is effectively predicted non-taken, the replacement
instructions that follow it will be associated with the non-taken
path and discarded if the branch is taken. This is often the desired

behavior as exemplified by our memory fault isolation produ
tion in Figure 1: if the address check fails, the store is flushed a
fetch resumes at the error handler.

Explicit tagging and DISE usage modes.Thus far, we
showed fetched instruction bits used both for matching a
parameterization. DISE also allows trigger bits that are not us
for either matching or parameterization to be interpreted
replacement sequence identifiers (tags). Use of this feature
explicit tagging—classifies ACFs into two categories.

Transparent ACFs operate on unmodified executable
using productions that match “naturally occurring” instructions
Examples of transparent functionality include memory fault iso
lation (productions are defined for loads, stores, and jumps as
Figure 1) and branch profiling (productions are defined fo
branches). Transparent productions do not use explicit tagg
since the bits of “naturally occurring” instructions cannot b
interpreted as replacement sequence identifiers. Here, the m
ping from pattern to replacement sequence is set up offline.

Aware ACFsoperate on modified applications into which
specially crafted DISE codewords (instructions that do not occ
naturally) have been planted. Code decompression is an aw
ACF. A DISE-aware utility compresses the original executab
by replacing common multi-instruction sequences with DIS
triggers. At runtime, DISE replaces the codewords with the co
responding original sequences. One way of generating co
words is with reserved opcodes. Since the number of reserv
opcodes is limited, aware ACFs can use explicit tagging to map
single opcode (via a single pattern) to multiple replaceme
sequences. For instance, in a 32-bit ISA with 6-bit opcodes a
5-bit register specifiers, an aware ACF using a single reserv
opcode and 3 register parameters can use the remaining 11 bi
name 2048 replacement sequences, effectively creating 2048
tinct codewords.

2.2. Engine Implementation

A DISE engine implementation has three primary objec
tives: zero performance degradation on ACF-free code, ACF p
formance that equals or exceeds that of a corresponding softw
implementation, and minimal performance, design, and verific
tion impact on the rest of the microarchitecture. We propose
implementation here and discuss some possible alternatives.

Basic structures.The instruction to instruction-sequence
expansion performed by DISE is similar in spirit—and thus i
implementation—to the instruction tomicro-instruction-
sequence expansion performed by many IA32 processors to c
vert complex instructions to a more regular (three register) inte
nal form [10, 12, 14, 15].

Three structures are used. Thepattern table (PT)contains
pattern specifications. On architectures with a regular ISA enco
ing, matching may be performed by masking and comparing ra
instruction bits. On architectures with irregular ISA encoding
instructions may need to be partially decoded and reformatt
before PT access for more efficient matching. It is likely tha
such processors already contain pre-decode facilities. Logica
the PT is a fully-associative structure that matches every instru
tion to all active patterns. If multiple patterns match, the mo
specific one (the one that matches the greatest number of inst

-
ns
he
us
e

ns
er
its

ng
on
es
an
).
e i
-
ul-
o a
o

als
c-

th

th
ad
d

ith
ion
er
n
h

c-

c-
ro
e
C
al
c-
re
4]
ed
-
n
ti

r-
d

T

FIGURE 2. DISE engine implementations

fetched selector
PT

µROM

RT

CLA

IL
insns

fetched

µ-insns
 + ACF

PT

fetched
insns

RT IL

decoding CLA

fetched

insns
 + ACF

and µROM may also be unified, although the originalµROM

.

e
r

le
-
.
d

e-
nt
ey

ion
e

te
le-
is

C
it.
s

-

ent
is
re-
n.

tain
in
ger
de
re
er
TB.

ved
ip-
the
r

es
c-
ct-
o

ng
or

in
tion bits) is chosen. This facility allows the construction of over
lapping pattern specifications and even negative specificatio
For instance, to specify the pattern “all loads that don’t use t
stack pointer”, two patterns are used. One matches loads that
the stack pointer and performs the identity expansion. The oth
matches all loads and performs the desired task.

In addition to a pattern specification, each PT entry contai
a replacement sequence identifier, which is either the identifi
itself (for transparent productions) or a mask that delineates
position within the trigger (for aware productions).

The replacement table (RT)is a small cache that houses
replacement sequences. Each RT entry corresponds to a si
instruction from a replacement sequence specification and c
tains a replacement literal and a series of instantiation directiv
Each entry is tagged by the replacement sequence identifier
the instruction’s offset within the sequence (i.e., its DISEPC
The tag also contains the length of the replacement sequenc
which the instruction is embedded; this field aids with RT virtu
alization. The RT may be direct-mapped or set-associative. M
tiple sequential instruction specifications may be coalesced int
block, reducing the number of RT read ports at the expense
internal fragmentation.

The instantiation logic (IL) is a combinational circuit that
executes instantiation directives to combine replacement liter
with trigger fields and produce the actual replacement instru
tions that are spliced into the application’s execution stream.

Pipeline organization.The contents and positioning of the
PT and RT depend on existing decoder pipeline structure, and
presence of CISC-to-RISC macro-expansion facilities.

Logically, the PT and RT are accessed in series. While bo
can be made small, it is likely not the case that they can be re
serially in a single cycle. If the existing decoder is implemente
in multiple stages, the PT and RT my be positioned in series w
no penalty. In a single stage decoder, however, this organizat
elongates the pipeline and violates our first design goal: zero p
formance impact on ACF-free code. An alternative is to positio
the PT and RT in parallel and incur a one cycle stall for eac
actual expansion. Figure 2 (top) illustrates this organization.

The presence of a CISC instruction to RISC micro-instru
tion macro-expansion facility raises the possibility of unifying
the two mechanisms. Logically, DISE is an instruction to instru
tion sequence transformer that precedes instruction to mic
instruction conversion. While this logical organization can b
mirrored physically—with DISE feeds an ACF-augmented CIS
stream to an unmodified and completely microarchitectur
CISC-to-RISC decoder—the two facilities are so similar stru
turally that they may be combined into a single complex. Figu
2 (bottom) illustrates this organization using the P6 decoder [1
as a rough guide. CISC to internal RISC translation is perform
in two ways. Translation resulting in four or fewer micro-instruc
tions is done via combinational logic arrays (CLAs). Translatio
requiring longer sequences is performed by sequentially instan
ating templates from a ROM (µROM). CLA/µROM multiplexing
(and µROM indexing) is based on the CISC opcode and pe
formed by a selector, itself either a CLA or ROM. The PT an
RT parallel the selector andµROM, respectively, in functionality
and positioning. A PT match overrides both theµROM and CLA.
The CISC-to-RISC and DISE ILs are physically unified. The R
contents must be kept immutable and invisible.
The unified organization requires the RT to contain replac

ment sequences in micro-instruction form. Since replaceme
sequences are externally specified at the instruction level, th
must be translated before being placed in the RT. The translat
is performed by the DISE controller on RT fills, and may use th
existing CISC-to-RISC decoding path.

Control and DISEPC. Replacement sequence precise sta
and internal control are implemented using the DISEPC state e
ment. In a DISE-enabled pipeline, every instance of the PC
expanded to a PC:DISEPC pair. Only the DISE engine interprets
the DISEPC annotations—initiating expansions at the DISEP
instruction of a replacement sequence—all other stages ignore
A fault at PC:DISEPC invokes the operating system, which save
the excepting PC:DISEPC as a pair. When the handler termi
nates, control returns to PC:DISEPC. Fetch ignores the DISEPC
annotation, DISE recognizes it and expands the replacem
sequence starting at offset DISEPC. DISE internal control
implemented in the same way. Since DISE branches are not p
dicted, a taken DISE branch is interpreted as a mis-predictio
Fetch is restarted at the same PC, but a new DISEPC. To ob
the right behavior for conventional branches embedded with
replacement sequences we suppress the prediction of non-trig
replacement sequence branches. This is trivial if pre-deco
information is used. If, on the other hand, the microarchitectu
interprets BTB hits as branch indicators, then non-trigg
replacement branches must be prevented from updating the B

2.3. Interface and System Architecture

In addition to having a lightweight implementation, DISE
must be flexible, portable and secure. These goals are achie
using two layers of abstraction and access control: PT/RT man
ulation is mediated by a hardware controller and access to
controller is in turn mediated by the OS kernel. The controlle
abstracts the internal formats of the PT and RT and virtualiz
their sizes. The OS kernel virtualizes the active set of produ
tions, preserving transparency of multiprogramming and prote
ing applications from interference by foreign code. These tw
layers present the user with a simple interface for managi
DISE productions. This interface may be instruction-based
memory-mapped and the productions themselves may reside

n

f

e

-

-

-

aps
ce
d
r-
ro-
ss
e

hat
it-
-ur
FIGURE 3. DISE engine implementations

decoder

engine

I$

controller

execute

D$

retire

either instruction or data space. Figure 3 diagrams an architect

ed
nel
ns.
r
is-

s.
-

so
Fs

g-

h
s
.g.,
ate
ca-
s
ach
i-

der
en-

n

ss
ia
ng
er
n-
be
c-
opy
e
en-
ire
s

ra-

in

at-
ng
ng
e
r-

es
s
n.
T.
pe
y
.
er
the
te
a

e
T.
lly
he
ac
an
i-

ith
d
r.
ft-
is
lly

f
E

en
PT
ar
ed

tte

ra-
nt
et
o-
with an instruction-based interface and productions residing
data space.

Controller. The controller provides an interface for pro-
gramming the PT and RT, abstracting the internal formats of p
terns and replacement instructions from DISE users. By owni
the controller, the processor vendor retains the freedom to cha
internal formats and PT/RT implementation details in futur
products. The controller translates productions from their exte
nal representation—a directive-annotated version of the proc
sor’s native ISA—to the internal formats used by the PT/RT. A
shown in Figure 3, the decoder may be used for this translatio

The controller also virtualizes the sizes of the PT and R
For minimal impact on decoding latency, these structures—es
cially the PT which must be multi-ported—must be relativel
small. However, restricting their sizes limits DISE’s applicability
Virtualization—treating the PT/RT as physical caches for a larg
virtual namespace—solves this problem. It also enhances
portability of DISE ACFs and reduces the amount of DISE sta
that must be maintained across context-switches. The main ch
lenge of virtualization is capturing the notion of PT and RT
misses. RT miss detection is easy. An RT miss is detected wh
an identifier/DISEPC pair generated by the PT is not in the R
PT miss detection is more difficult as a missing entry is natura
interpreted as a non-match. To identify PT misses we track t
number of active and PT-resident patterns associated with e
opcode in a small direct-mapped table. A fetched instance of
opcode with differing active and resident pattern counters ind
cates a PT miss, triggering a fill ofall patterns for that opcode. In
this organization, thepattern counter table(which is of fixed vir-
tual size) is the only piece of architectural state associated w
the PT/RT complex; the contents of the PT/RT can be “faulte
in.” A PT or RT miss interrupts the processor via the controlle
The mechanics of PT/RT miss handling resemble those of so
ware TLB miss handling and have similar costs. The pipeline
flushed and the missing productions are loaded procedura
again via the controller.

OS kernel.The OS kernel virtualizes the resident set o
productions. The first aspect of this is the preservation of DIS
state across context switches. DISE state consists of the cont
of the pattern counter table, DISEPC and DISE registers; the
and RT are demand loaded. The DISE registers and DISEPC
accessed via conventional datapaths, using either privileg
instructions or save/restore replacement sequences. The pa
counter table is accessed via the controller.

The second aspect of production virtualization is the sepa
tion of production sets generated by and targeted for differe
applications from one another. Non-separated production s
give rise to security problems, with one process using DISE pr
ductions to read and write the state of a second process, perh
even the OS kernel. One component of the solution is to for
DISE users to submit ACFs to the kernel for “inspection an
approval.” However, this policy should not be applied unive
sally, as some ACFs may rely on fast user-level access to the p
duction interface. A compromise permits applications to acce
the DISE controller directly, but uses the OS kernel to control th
contents of the PT/RT across context-switches. Productions t
reside in an application’s data space (i.e., they were not subm
ted via the kernel API) are limited to operating on that applica
tion only, they are deactivated when the application is switch
out. Productions that are submitted to and approved by the ker
reside in kernel space and can operate on other applicatio
Transparent ACFs, many of which have a system-utility flavo
and are supplied by the OS vendor, use this model. The subm
sion API enables third-party utilities.

3. ACF Formulations in DISE
DISE enables the implementation of a large class of ACF

In this section, we present implementations of two ACFs—mem
ory fault isolation and dynamic code decompression. We al
explain how ACFs can be dynamically composed. These AC
are not new. Their unification via a single hardware facility is.

3.1. Transparent ACFs

Transparent ACFs are applied to unmodified binaries, au
menting or redefining the functionality of “naturally occurring”
machine instructions. We describe several below.

Memory fault isolation. Memory fault isolation prevents
multiple applications from interfering with one another throug
memory. Virtual memory provides this feature for application
running in different address spaces, but some domains (e
extensible operating systems and applications) cannot toler
the high cost of multi-address-space inter-process communi
tion. Software-based fault isolation [32] allows multiple module
to safely share a single address space by statically rewriting e
module to monitor every memory reference (load, store, or ind
rect jump). There are two variants.Sandboxingprecedes each
unsafe instruction with a code sequence that sets its high-or
address bits to the module’s assigned code or data segment id
tifier. Segment matchingprecedes each unsafe instruction with a
address check and jumps to an error routine if the check fails.

Both variants are easily implemented in DISE: the addre
checks/modifications are inlined dynamically rather than v
static transformation. Figure 1 illustrates the segment matchi
case. The DISE formulation is actually computationally cheap
than the software one in two ways. First, the software impleme
tation requires as many as five dedicated registers that must
reserved by the compiler or scavenged by a rewriting tool. Se
ond, each software-inserted code fragment requires an extra c
instruction to ensure that malicious jumps into the middle of th
sequence do not subvert the address check. The DISE implem
tation employs dedicated DISE registers and does not requ
additional copies since the DISE control-flow model disallow
jumps into the middle of replacement sequences.

Other transparent ACFs. Path profiling [3] dynamically
records the number of times each acyclic path in a program is t

e

e

-

-

l-

n

h

,

ts

e

rn

s

i-
g
his
-
ag
om
r-
SE

-

n
ys

al
To
rs
te
s
to
a-
rd

g.
ry
of
rs
g
ge
ot
l-

of
re

e-
.

on

v-
d
],
e
c-
E

T/
a
er
t
IS
re
se
o
e
es

e-
he
ns

the

ith
ors
fill
om-
che
ors

an
n-
n
by

/RT
n

les
ield
es
ic
ive

of
tive
ior
ay
d.

ter,
er
en-
E

4.
e-
sists
r or
tag.

ed
dy
n
n
use
versed. Path profiles are used to identify “hot” paths for optim
zation [2] and evaluate test coverage [24]. Path profilin
associates a tag—e.g., PC and conditional branch outcome
tory—with each static path. At an acyclic path endpoint—func
tion return or loop back-edge—a counter associated with this t
is incremented. A post-execution pass reconstructs paths fr
tags. As profile consumers usually do not require complete info
mation, the counter maintenance scheme may be lossy. DI
allows a simple “bit tracing” implementation of profiling via pro-
ductions for conditional branches and function returns. A com
plete description of a DISE path profiler is available here [8].

Distributed shared memory (DSM) provides the abstractio
of a single shared address space among processors with ph
cally distributed memory. Software DSM that leverages virtu
memory hardware is limited to sharing at the page granularity.
achieve fine-grain sharing in software, an application monito
each memory operation to determine whether it refers to priva
or shared data and whether shared data is present or not (a
Shasta [28]). DISE productions for these checks are similar
those used for memory fault isolation. In this way, a DISE-cap
ble machine can be configured to have the appearance of ha
ware-supported fine-grained DSM without custom hardware.

Code assertions are an invaluable part of debuggin
Although modern processor support limited hardware memo
watchpoints, more general assertions involving the evaluation
arbitrary criteria must be implemented in software. Debugge
typically implement complex assertions by single-steppin
through the program, executing the assertion from the debug
itself. This process is extremely slow. Even if the debugger is n
running in another process—it usually does—instruction seria
ization neutralizes the parallelism and pipelining capabilities
the underlying processor. With DISE, debugging assertions a
inlined into the program at arbitrary granularities and their ex
cution is interleaved with the original code without serialization
Assertions can be added and removed quickly. Inactive asserti
have no runtime overhead.

Reference monitors implement security policies by obser
ing program execution, terminating it if some policy is violate
[26]. They may control an application’s use of memory [32
library calls [33], or system calls [4]. A DISE-based referenc
monitor checks whether a program executing a certain instru
tion is permitted to do so. Three key properties make DIS
attractive for enforcing security policies. First, the restricted P
RT access model ensures that the security policies themselves
not tampered with. Second, DISE’s positioning at the decod
and the atomic internal control-flow model of replacemen
sequences ensures that security checks implemented as D
productions cannot be bypassed. Finally, DISE productions a
small, posses private data registers, and are naturally expres
as declarative rules making them amenable to automated reas
ing. DISE security policies combine the generality of softwar
with the tamper and subversion resistance of hardware schem

3.2. Aware ACFs

In aware mode, DISE can be viewed as an interface for cr
ating ACFs that combine static and dynamic components: t
static component analyzes the program, defines the productio
-

i-

in

-

r

s

and plants the codewords; the dynamic component expands
codewords and performs the actual “work.”

Dynamic code decompression.Code size is an important
concern for embedded systems. Static compression coupled w
dynamic decompression address it. Dynamic decompress
come in two varieties. Those that sit on the instruction cache
path [34] enable compressed memory images. Those that dec
press fetched instructions [20] also enable a compressed ca
footprint. High-performance processors may use decompress
of the second kind together with smaller instruction caches.

Using DISE, we implement post-fetch decompression as
aware ACF without ISA redesign and without decompressio
specific hardware. Counter-intuitively, the DISE implementatio
enables more sophisticated compression than that supported
dedicated decompressors. DISE provides a mechanism (PT
reloading) for customizing the decompression dictionary to a
application or even application phase. In addition, DISE enab
the use of parameterized decompression templates that y
sequences with different register names or immediate valu
when instantiated with different arguments by different stat
codewords. This feature allows the compression of PC-relat
branches. The problem with unparameterized compression
PC-relative branches is that compression itself changes rela
PCs. Two static branches that can share a dictionary entry pr
to compression (i.e., their PC-relative offsets were identical) m
no longer be able to share it after compression is performe
Finding a stable dictionary configuration is difficult [20]. By
making the PC-relative offset a replacement sequence parame
DISE allows two static branches to share a dictionary entry. Aft
compression, the offset of each static branch adjusted indep
dently via then parameter. An example of parameterized DIS
(de)compression (albeit without branches) is shown in Figure

As an aware ACF, our implementation uses explicit replac
ment sequence tagging. Each decompression codeword con
of a reserved opcode (all use the same one), three 5-bit registe
immediate parameters, and an 11-bit replacement sequence
A single pattern specification—which matches the reserv
opcode—can name up to 2K dictionary entries. We use a gree
compression algorithm [20]. For each application, we build a
exhaustive set of candidate dictionary entries: instructio
sequences of any size that do not straddle basic blocks. We
re

E

d
n-

.

,
FIGURE 4. Dynamic code (de)compression

uncompresssed text
lda a2, 8(a2)
ldq a4, 0(a2)
cmplt a4, a0, a5
bne a5, 0x1200bd00
lda a3, -8(a3)
ldq a4, 0(a3)
cmplt a4, a0, a5
bne a5, 0x1200bd10
cmpeq a2,a3,a5
bne a5, 0x1200bd20

dictionary
P1: T.OP == res ->T.IMM

R1: lda T.P1, T.P2(T.P1)
ldq a4, 0(T.P1)
cmplt a4, a0, a5

compressed text
res a2, 8, R1
bne a5, 0x1200bd00
res a3, -8, R1
bne a5, 0x1200bd10
cmpeq a2,a3,a5
bne a5, 0x1200bd20

m-
on-

-
he

he

re
ce
e
m-

osi-
ss
sin-
ose

a-
o-

om-
of
es

lis
tes
the
-

m-
, w
ate

d
m-
,
v
0

y
as
op
-
e
y

t
le

rite
-
nt
g
h
re
gle
ed
su
-

a
lly
e

e

o
fo
F

en
ay

ibl

ng
parameterization to combine candidate sequences. From this
we iteratively choose the sequence that provides the grea
immediate compression. The compression calculation weighs
cost of coding the dictionary entry into the application’s produc
tion segment, against the number of static instructions co
pressed out of the text segment. When the process terminates
instantiate the decompression codewords with the appropri
parameters, including branch offsets.

Other aware ACFs.Several systems have been propose
for dynamically generating code that is specialized, i.e., custo
ized to exploit particular runtime values [2, 13]. Unfortunately
even the most efficient software dynamic code generators ha
significant runtime overhead—from 10 to as many as 100
cycles per generated instruction [13]—limiting their applicabilit
and specialization granularity. DISE can act as a substrate for f
dynamic code generation. Consider this simple scenario: a lo
containing a multiply instruction with one loop invariant oper
and. If the operand is a power of two, the multiplication can b
reduced to a shift. In DISE, we implement this specialization b
replacing the multiply with a codeword. At runtime, prior to
entering the loop the value of the operand is tested and used
define the replacement instruction appropriately. This examp
appears trivial because a software specializer could easily rew
the multiply instruction (assuming self-modifying code is per
mitted). The advantage of DISE is clearer when the invaria
operand is the sum (or difference) of two powers of two allowin
the multiply to be reduced to two shifts and an addition. Wit
DISE, this specialization is just as easy as the first. A softwa
specializer, however, would have to replace what was a sin
instruction with three, retarget branches around the expand
code, and scavenge a free register to hold the intermediate re

While on the topic, we should note that DISE is not self
modifying code. DISE allows an application to modify its own
code but in a structured and highly temporary way.

3.3. ACF Composition

DISE dynamically composes ACF and application code in
way that is transparent to the application. The use of logica
separate storage and control facilitate this operation. Becaus
must be written specifically for this dynamic composition, ACF
code is naturally declarative (functional), allowing ACFs to b
dynamically composed with each other.

Composition semantics.The semantics of composition are
defined by precedence or “nesting” relationships. DISE does n
treat instructions in a replacement sequence as candidates
subsequent expansion. This restriction prevents infinite AC
recursion and simplifies the hardware. Nevertheless, wh
desired, this behavior can be simulated via composition. We s
that ACFX is nested within ACFY if the final instruction stream
is equal to the one obtained by first applying ACFX to the appli-
cation fetch stream—in functional notationX(application)—and
then applying ACFY to thatstream—Y(X(application)). The pro-
ductions forX-within-Y are simply the productions ofY plus the
productions ofX with the productions ofY “executed” on its
replacement sequences. Non-nested composition is also poss
but counter-intuitively is more difficult. The difficulty lies in
combining replacement sequences of identical or overlappi
pattern specifications such that the original meanings of the co
ponent sequences are preserved. Designing algorithms for n
nested composition is an area for future work.

Composition is not a primitive exported by the DISE hard
ware system. DISE productions are composed in software. T
precise mechanics of composition (i.e., which entity performs t
composition and how) depends on the ACFs composed.

Transparent with transparent. Transparent ACFs are util-
ities that act on unmodified applications. Transparent ACFs a
managed either by the OS kernel (e.g., fault isolation, referen
monitoring) or by some other third-party application (e.g., cod
assertions). The managing entity—kernel or debugger—co
poses transparent ACFs in its own data space.

Examples of nested and non-nested transparent comp
tions—using productions for fault isolation and store addre
tracing—are shown in Figure 5. Store address tracing uses a
gle production that writes the store addresses to an array wh
own address is in dedicated register$dr5. The composition at the
bottom left of the figure nests address tracing within fault isol
tion—i.e., we fault isolate traced code. It consists of the fault is
lation production,R1, and the fault isolation production applied
to the address tracing replacement sequence,R3. R3 contains two
stores—the second one is the trigger,T.INSN—both of which are
expanded by fault isolation’sP1->R1 production (in boxes). The
first store in the address tracing replacement sequence is c
pletely literal (i.e., it has no parameters), so the instantiation
the fault isolation replacement sequence within it (first box) us

t,
t

e

e

t

o

lt.

it

t
r

e,

FIGURE 5. Composing ACFs

Non-Nested composition
P1: T.OPCLASS == store ->R4
P2: T.OPCLASS == load ->R1

R1: srli T.RS, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
T.INSN

R4: lda $dr4, T.IMM(T.RS)
stq $dr4, 0($dr5)
lda $dr5, 4($dr5)
srli T.RS, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
T.INSN

Memory Fault Isolation (MFI)
P1: T.OPCLASS == store ->R1
P2: T.OPCLASS == load ->R1

R1: srli T.RS, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
T.INSN

SAT in MFI nested composition
P1: T.OPCLASS == store ->R3
P2: T.OPCLASS == load ->R1

R1: srli T.RS, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
T.INSN

R3: lda $dr4, T.IMM(T.RS)
srli $dr5, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
stq $dr4, 0($dr5)
lda $dr5, 4($dr5)
srli T.RS, 26, $dr1
cmpeq $dr1, $dr2, $dr1
bne $dr1, error
T.INSN

Store Address Tracing (SAT)
P3: T.OPCLASS == store ->R3

R3: lda $dr4, T.IMM(T.RS)
stq $dr4, 0($dr5)
lda $dr5, 4($dr5)
T.INSN

nd

e
n
y
der
oad
B
tor
T
tes
c-
E
a
s

he
th
ed

f
d

o
nt

nt
we

f
e

lso

er
on
two

i-
to
he
he
ur
ee
er
e,
at
.,

-
of
en
actual register names, replacingT.RS with $dr5. We call this
replacement sequence inlining. In general, inlining may require
DISE registers to be renamed to avoid conflicts.

The bottom right hand side of the figure shows a non-nested
composition. Here, we trace and fault isolate application stores,
but do not fault isolate the stores that perform the tracing. The
composition consists of the productions of both ACFs, where
replacement sequences of overlapping pattern specifications (P1
andP3) are merged in a way that preserves the meaning of both
original sequences. Here, we merge the store productions,R1 and
R3, into a new production,R4. Here, a simple merging in which
we concatenate the two replacement sequences—address tracing
in the shaded box, fault isolation in the clear box—but leave only a
single instance of the trigger, produces the desired result. For two
arbitrary replacement sequences, this may not be the case (non-
nested composition may in fact be impossible).

Aware with aware. Since aware ACFs require a static binary
transformation (to insert the codewords), it is the responsibility of
the binary rewriting utility to compose its own ACF with existing
ones. Non-nested composition is relatively straightforward. The
binary rewriter must only ensure that it does not include any of the
codewords planted by other ACFs in its own replacement
sequences (recall, recursive expansion is not allowed). It must also
ensure that its own codewords do not collide with those used by
any previously applied ACFs. An easy way to do this is to use a
different reserved opcode. Alternatively, a single opcode could be
used for two ACFs provided the replacement sequence identifiers
used in explicit tagging do not collide. Nested composition is
more involved. Here, the outer rewriter must not only transform
the text, but also inline its own replacement sequences—using the
procedure outlined above—into those of previously applied ACFs.

Transparent with aware. One of DISE’s strengths is its
composition of transparent and aware ACFs. Typical composition
nests the transparent ACF within the aware one. For instance,
when composing fault isolation and decompression, we want to
fault isolate the uncompressed program, not the decompression
codewords. Similarly, when composing code assertions with
dynamic specialization, we want to apply the code assertions to
the generated code, not to the codewords that generate it. The
problem with this sort of composition in current environments is
that aware ACFs are typically server-side customizations while
transparent ones typically originate from the client. However,
using conventional rewriting, the inner transparent ACF has to be
applied first. As a concrete example, consider the fault isolation/
decompression combination. To compose these using existing
means we would first apply fault isolation to an application, then
compress the result. The question is: why would a server store a
compressed application that includes fault isolation code when
fault isolation is a client option? By composing productions inde-
pendently of the application, DISE allows the desired behavior to
be implemented. The server compresses an unmodified applica-
tion and delivers it to the client. The client applies the transparent
fault isolation productions to the aware decompression replace-
ment sequences via inlining.

Since the binary rewriter is not available to the client, and
aware productions exist in the application’s data segment rather
than kernel memory, composition cannot be invoked by the kernel
and performed in memory. Instead, we invoke composition from

the RT miss handler on every aware ACF production miss, a
represent composite productions in the RT only.

4. Experimental Evaluation
We evaluate DISE using simulation tools built on top of th

SimpleScalar Alpha instruction set and system call definitio
modules [5]. The simulator models a MIPS R10000-like 4-wa
superscalar processor with a 12 stage pipeline, 128 entry reor
buffer, 80 reservation stations, and aggressive branch and l
speculation. We model an on-chip memory hierarchy with 32K
instruction and data caches and a unified 1MB L2. The simula
models a DISE mechanism with a default configuration of 32 P
entries and 2K RT entries. Each PT and RT entry occupies 8 by
(a highly conservative estimate), the total sizes of the two stru
tures are 512 bytes and 16KB respectively. To model the DIS
interface, we flush the pipeline on a PT or RT miss and stall for
fixed number of cycles: 30 for a simple miss, 150 for a mis
requiring replacement sequence composition.

We apply ACFs to the SPEC2000 integer benchmarks. T
benchmarks are compiled for the Alpha EV6 architecture wi
GCC 3.2.2 using the -O4 optimization flag. Results are report
using complete runs ontest inputs. The simulator extracts nops
from both the dynamic instruction stream and the static image.

4.1. Memory Fault Isolation

We compare DISE and binary rewriting implementations o
memory fault isolation. Our metric is execution time normalize
to the memory fault isolation-free case.

DISE formulation. The first and last bars in the top graph in
Figure 6 compare the binary rewriting implementation with tw
DISE schemes.DISE4uses the same four-instruction replaceme
sequences used by binary rewriting.DISE3 exploits DISE’s
semantics that disallow jumps into the middle of replaceme
sequences to eliminate a copy instruction. In both experiments,
simulatefree (with no additional runtime cost) DISE. DISE4 out-
performs binary rewriting: while they retire an identical number o
instructions, DISE4 does not place the ACF instructions into th
cache, and incurs fewer misses. DISE3 outperforms both by a
executing fewer instructions.

DISE implementation.A free implementation of DISE may
not be possible. Fitting DISE into the decoder may require eith
adding another decoding stage or incurring a single cycle stall
every successful DISE expansion. The performance of these
options are shown as the middle two bars—+stall and +pipe,
respectively—in the top graph of Figure 6. The effects are intu
tive: the penalty of an additional decoding stage is proportional
the frequency of mispredicted branches, typically around 1%. T
penalty of a single-cycle stall per expansion is proportional to t
total number of expansions. The stall option fits better with o
design philosophy of zero performance degradation on ACF-fr
code. Unfortunately, expansion frequency is often much high
than branch misprediction frequency. Fault isolation, for instanc
expands about 30% of dynamic instructions. For programs th
exhibit good instruction cache behavior even after rewriting (e.g
bzip2, gzip, mcf, vpr), the stalling DISE implementation underper
forms rewriting. The serial stall also dominates the cost/saving
additional instructions, narrowing the performance gap betwe

B
s,
n-
-
ry
r
mic
la-
e
ell

s

es-
er-
re
ed
ssor
c

-
it
effi-
ve
e of
es-
in

and
E
t

aph

FIGURE 6. Memory fault isolation

0

1

2

3 ACF/DISE Implementation (exec. time norm. to ACF-free)
Binary Rewriting DISE4 (+stall)

DISE3 (+stall)
DISE4 (+pipe)
DISE3 (+pipe)

DISE4 (free)
DISE3 (free)

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

0

1

2

3

4
I-Cache Sensitivity (exec. time norm. to 32KB I$)

Binary Rewriting

DISE (+pipe)

Baseline (+pipe)

8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

5.
94

4.
21

5.
87

4.
27

5.
43

0

1

2

3

4
Processor Width Sensitivity (exec. time norm. to 4 wide)

Binary Rewriting

DISE (+pipe)

Baseline (+pipe)

2 2 2 2 2 2 2 2 2 2 24 4 4 4 4 4 4 4 4 4 48 8 8 8 8 8 8 8 8 8 816 16 16 16 16 16 16 16 16 16 16

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
%
tia
ed
he
m

ity
In
ry
ic
ul
ax
s,
of
-

ve
. F
d

ati
lin
d

cy

ts.
the
r-

th
m-
te
le

o-
an-

s
es-
pe-
ur
n

fit-
ion
e-

dic-
to
ck
DISE4 and DISE3. We are left to choose between a uniform 1
penalty that applies even to ACF-free codes and a substan
penalty when ACFs that result in frequent replacements are us
If heavy DISE use is projected, the elongated pipeline may be t
sensible choice. For the remainder of the evaluation, we assu
this design.

Cache size and processor width.ACF code has two costs.
The static cost is decreased effective instruction cache capac
The dynamic cost is decreased effective pipeline throughput.
general, DISE ACFs have only the dynamic cost. As in memo
fault isolation, this cost is often lower because DISE’s atom
replacement sequence semantics enable simpler, shorter form
tions. The bottom graphs of Figure 6 isolate these costs, by rel
ing cache capacity and pipeline bandwidth constraint
respectively. The middle graph shows relative execution times
DISE3 and binary rewriting on 4-wide processors with instruc
tion caches of varying sizes. As cache size increases, static o
head decreases and the dynamic overhead remains constant
the binary rewriting implementation, the relative total overhea
decreases. The DISE implementation does not have any st
overhead, so the relative dynamic overhead grows as the base
performance improves with the growing cache size. These tren
favor DISE. Physical cache size is limited by access laten
l
.

e

.

a-
-

r-
or

c
e

s

while instruction working sets are growing.
The bottom graph shows relative performance on 32K

instruction-cache processors of different widths. At high width
data dependences limit parallelism within a fixed reordering wi
dow, allowing ACF code to exploit idle resources at little per
ceived cost. Although this trend is apparent for DISE, the bina
rewriting implementation does not improve as rapidly with wide
machines. While increased processor width reduces the dyna
cost of ACFs, the static cost remains and, in fact, becomes re
tively larger. As the absolute cost of the application shrinks, th
relative cost of each cache miss grows. This trend also bodes w
for DISE: its advantage over binary rewriting will increase a
processor performance grows.

4.2. Dynamic Code Decompression

DISE can be used to implement post-fetch code decompr
sion, enabling both reduced static code sizes and improved p
formance due to better instruction cache utilization. We compa
the DISE implementation with a dedicated decoder-bas
decompressor [20]. We assume that the dedicated decompre
has a facility for programming the on-chip dictionary. Our metri
is static code size, normalized to uncompressed text size.

DISE features.Several features distinguish DISE decom
pression from its dedicated counterpart [20]. In DISE’s favor,
supports parameterized decompression, which enables more
cient dictionary usage and the compression of PC-relati
branches. Parameterization does, however, increase the siz
dictionary entries. On the other hand, the dedicated decompr
sor may use 2-byte codewords which improve compression
two ways: reducing the size of compressed representations,
making the compression of single instructions profitable. DIS
canexploit existing short formats, but we do not account for tha
possibility here.

The effects of these features are separated in the top gr
of Figure 7. Stacked bars show the results of six experimen
The bottom portion of each stack is compressed code size,
top portion (solid black) adds the dictionary size. The first expe
iment (dedicated) is the dedicated decompressor, complete wi
2-byte codewords and single-instruction compression. The co
pression ratios achieved—about 75% of original text size (no
the scale of the graph), dictionary not included—are comparab
to those previously published [20]. In the next two bars, we pr
gressively eliminate the dedicated decompressor’s two adv
tages: single-instruction compression (–1insn), and the use of 2-
byte codewords (–2byteCW). Eliminating these features, reduce
compression effectiveness to 85%. With dedicated-decompr
sion-specific features removed, the next three bars add DISE-s
cific features. The use of parameterization requires fo
additional bytes per dictionary entry to hold the instantiatio
directives (+8byteDE). Without parameterization, larger dictio-
nary entries require more static instances to be considered pro
able. As a result, fewer of them are selected and compress
ratios degrade to 90% and above. Shown in the fifth bar, param
terization (+3param, we allow three parameters per dictionary
entry) more than compensates for the increased cost of each
tionary entry by allowing sequences with slight differences
share entries; it improves compression ratios dramatically (ba

iss
s

c-
T
ct-
ss

ch
r-
ts
-
ifi-
e)

F
ous
le-
,
eld
y
ry
E

use
in-
i-

lt
us

-
ur
n a

C-
ve
tte

y
7

c-
.
se

an
r
K

e
K
at
e
siz
g

r-
ct
s,
down to 75%). The final bar (DISE)—corresponding to the full-
featured DISE implementation—adds the compression of P
relative branches. The high static frequency of PC-relati
branches enables compression ratios of 65%, appreciably be
than those achieved with dedicated hardware.

Performance.Compression can improve performance b
reducing instruction cache misses. The middle graph in Figure
shows execution times for DISE decompression and four instru
tion cache sizes: 8KB, 32KB, 128KB and perfect (infinite)
Times are normalized to the uncompressed, 32KB cache ca
Most of the SPEC2000 benchmarks—except forcrafty, gzip, and
vpr—have uncompressed instruction working sets smaller th
32KB. About half have working sets larger than 8KB and suffe
significant degradation at that cache size. The addition of a 2
entry RT (we model a perfect RT in this experiment, but th
results are equivalent as discussed in the next paragraph)—16
of on-chip decompression dictionary storage—can compens
for a significant fraction of this loss. Of course, an RT can b
used for purposes other than compression. Increasing cache
may increase fetch latency and does not allow the program ima
to be compressed in other levels of the memory hierarchy.

RT size.For the results reported above, we modeled a pe
fect RT. In the bottom graph of Figure 7, we evaluate the impa
of realistic RTs using four configurations, 512 and 2K entrie
each both direct-mapped and 2-way set-associative. An RT m
prompts a pipeline flush and 30 cycle stall. For our dictionarie
—which were selected to minimize combined program and di
tionary size without regard to RT misses—a 2K, 2-way R
(nearly) matches the perfect RT in all benchmarks. The dire
mapped configuration performs nearly as well. The effectivene
of 512-entry RTs depends on production working set size (whi
is smaller than the instruction working set size). While the pe
formance of benchmarks with small production working se
(e.g.,bzip2, mcf, parser) remains good, especially with the set
associative RT, that of the larger benchmarks degrades sign
cantly. Naturally, the trade-off between performance (RT hit rat
and compression ratio must be made appropriately.

4.3. Composing Decompression and Fault Isolation

One of the benefits of DISE is that it supports dynamic AC
composition. Here, we measure the performance of simultane
decompression/fault isolation. Thus far we have seen two imp
mentations of each: binary rewriting and DISE for fault isolation
dedicated hardware and DISE for decompression. These yi
three combinations for implementing their composition: binar
rewriting for fault isolation and dedicated decompression, bina
rewriting for fault isolation and DISE decompression, and DIS
for both. The fourth combination—DISE for binary rewriting
and dedicated hardware decompression—is possible, but beca
DISE is so physically similar to a dedicated decompressor, a s
gle processor is unlikely to include both mechanisms. As prev
ously noted, the solutions that use binary rewriting for fau
isolation do not fit real world code usage models. Here, we foc
solely on performance.

Performance.The top graph of Figure 8 shows the perfor
mance of the three ACF combinations on processors with fo
different cache sizes, normalized to an unmodified execution o
FIGURE 7. Dynamic code decompression

0

1

2 I-Cache Sensitivity (exec. time norm. to uncompressed, 32KB I$)

Baseline

DISE (+pipe)

8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

2.
27

0

1

2

3

4
RT Sensitivity (exec. time norm. to uncompressed, 32KB I$)

Perfect

2K/2-SA

2K/DM

512/2-SA

512/DM

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

4.
97

4.
43

5.
10

0.5

0.6

0.7

0.8

0.9

DISE Features (static code size norm. to uncompressed text)
dedicated -1insn -2byteCW +8byteDE +3param DISE

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
FIGURE 8. Decompression + fault isolation

0

10

20

30

40
RT Sensitivity (exec. time norm. to unmodified, 32KB I$)

Perfect

2K/2-SA (150)
2K/2-SA (30)

2K/DM (150)
2K/DM (30)

512/2-SA (150)
512/2-SA (30)

512/DM (150)
512/DM (30)

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

49
.4

0

1

2

3

4
I-Cache Sensitivity (exec. time norm. to unmodified, 32KB I$)

BR-fi + DED-dec

BR-fi + DISE-dec

DISE-fi + DISE-dec

8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

32
K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

12
8K

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

5.
84

4.
17

5.
82

4.
15

5.
40

r

.

B
e

e
e

le
de
se
s
-
ls
ble

s-
-
n
To
ced
st
-

if-
ed
ica-
or-
g
sed

ft-
y

y
la-

d
.,
to
c-

ry
r-
nt
-
ll
r-

he
s
ike

.,
wn
a-
-

m
le
processor with a 32KB cache. Again, we use a perfect RT. The
rewriting/dedicated (fault-isolation/decompression) combination
performs poorly, especially for small caches. The rewriting
implementation of fault isolation bloats the text to such a degree
that dedicated compression cannot compensate. Factors of 2–3
performance degradation are observed for a 32KB cache, 4 and
higher for an 8KB cache. Combining DISE (de)compression
with binary rewriting helps considerably. DISE’s parameterized
compression and ability to compress PC-relative branches allow
it to essentially reverse most of the code bloat caused by rewrit-
ing, the fault isolation sequences are simply factored out into
decompression productions. The cost of the registers lost to scav-
enging by the rewriter remains, as does the inefficiency of com-
pressing a bloated executable, no matter how redundant. These
costs disappear in the DISE-DISE implementation, which only
incurs the dynamic cost of the fault isolation instructions and any
costs associated with RT performance. We examine these next.

RT size and miss latency.Composing ACFs degrades RT
performance in two ways: effective capacity is reduced by inlin-
ing replacement sequences into one another, and the composition
operation increases RT miss handler latency. These effects are
quantified and isolated in the second graph of Figure 8. The bot-
tom portion in each stack measures performance degradation due
to RT capacity reduction. The 2K, set-associative RT continues
to perform well, producing slowdowns of 0–80%, much lower
than the factors of 2, 3, and above slowdowns produced by non-
DISE solutions (see section above). The 512 and direct-mapped
configurations suffer due to the greatly increased RT working set,
yielding factor of 5 and above slowdowns. For the top portion
(striped), we increase RT miss handler latency from 30 to 150
cycles to model the latency of composition. Here, performance
degradations of factors of up to 50 are observed, although for a
2K, 2-way RT configuration, factors of 5 slowdowns are the
norm. Certainly, the performance of composed ACFs can be
improved by accounting for RT sizea priori and making the
appropriate usage trade-offs. However, improving the perfor-
mance characteristics of this trade-off for composed ACFs is an
important area of future work.

5. Related Work
DISE builds on several large bodies of work.
Hardware translation/expansion.IA32 processors [12,

14, 15] dynamically macro-expand each CISC instruction into
one or more internal RISC operations, potentially caching the
translations [12]. Dynamic Instruction Formatting [22] schedules
cached instructions into VLIW groups. Speculative Decode [18]
implements microarchitectural execution time optimizations like
silent-store elimination using alternate expansions. These facili-
ties resemble DISE mechanically, but differ in two major ways.
First, they translate the ISA to a simpler form for the purpose of
reducing execution complexity. DISE adds ISA instructions in
order to add functionality. Second, they are inaccessible to soft-
ware, and thus capable only of changing/optimizing representa-
tions. To add functionality, DISE has an API.

Hardware ACF implementations.Programmable micro-
code [6, 23] was an early choice for implementing ACFs like
address tracing [1]. Although microcode remains a viable option

for implementing complex instructions and programmab
microcode stores persist (e.g., Intel supports limited microco
patching to fix bugs in the field [16]), its current use is too spar
and irregular to effectively support ACFs. DISE implement
ACFs using ISA instructions. Alpha’s PAL [29] exposes hard
ware internals to privileged software, but is invoked using cal
and traps, not matching and replacement, making it unsuita
for implementing the ACFs we describe here.

The profiling processor [35] and instruction path co-proce
sor [7] provide additional functionality—profiling and trace con
struction, respectively—at virtually no cost to the applicatio
using dedicated, potentially programmable, pipeline stages.
minimize performance impact, the dedicated stages are pla
post retirement and thus are inappropriate for ACFs which mu
inspect or modify instructions before they execute. By transform
ing the instruction stream before execution, DISE supports a d
ferent (potentially broader) class of ACFs. In decoder-bas
decompression [20], tagged instructions in a compressed appl
tion are interpreted as dictionary indices and replaced by the c
responding entries. DISE generalizes this functionality, usin
parameterized matching and replacement, and thus can be u
for other purposes. DISE is not reconfigurable hardware, it
reconfigures the instruction stream, not the functional units.

Software translation/expansion.FX!32 [31], DAISY [11]
and Transmeta’s Crusoe [17] convert one ISA to another in so
ware. Dynamo [2] adds optimization. A software translator ma
implement certain ACFs itself (e.g., profiling) or have the abilit
to add simple ACFs to translated code. However, using a trans
tor for general purpose ACF implementation is difficult an
inconvenient, especially if translation itself is not needed (i.e
the application is native). DISE can be used to add ACF code
translated code. DISE is not suitable for emulation, as it only re
ognizes native instructions.

Software ACF implementations.Binary rewriting tools
like Atom [30], Etch [25], and EEL [19] provide hooks for add-
ing ACF code to an application. Paradyn [21] includes a bina
rewriter that can transform any program, including the OS ke
nel, while it runs. Binary rewriters have been used to impleme
profiling [3], dynamic race detection [27], shared memory com
munication [28] and memory fault isolation [32]. These can a
be implemented using DISE without degrading cache perfo
mance or incurring the overhead of rewriting the executable.

ACF interfaces.DELI [9] is an API to Dynamo’s caching,
linking, and optimization infrastructure. Like DISE, DELI pro-
vides an interface to an execution substrate to help with t
implementation of ACFs. Implemented in software, DELI i
more heavyweight than DISE, but can also be used for tasks l
emulation. DISE can be used both with DELI or by it.

6. Conclusion
There is a growing number of computing platforms (e.g

server, workstation, palmtop, phone, etc.), and each has its o
unique set of requirements. The ability to customize an applic
tion to fit the requirements of a particular environment is becom
ing an important system function.Dynamic instruction stream
editing (DISE) is a cooperative software-hardware mechanis
that dynamically customizes applications via programmab

c-
.”

d

s.

.”

e-

nt

-
”

”

of

s

d

w
in

t

e

n

-

instruction macro-expansion. DISE executes a set of productions
on an application’s fetch stream, feeding the execution engine an
enhanced stream that includes application customization func-
tions (ACFs). DISE is a single facility that supports two general
models of ACFs: transparent and aware. We have demonstrated
DISE formulations of both. Memory fault isolation is a transpar-
ent ACF implemented via productions that expand “naturally
occurring” instructions. Dynamic code decompression is an
aware ACF implemented via productions that re-expand spe-
cially crafted codewords back to their original instruction
sequences. We showed how DISE can dynamically add fault iso-
lation code to an application as it is decompressed to illustrate
how the DISE facility can dynamically compose multiple ACFs.

DISE combines the advantages of software and hardware
ACF implementations. Like software approaches, DISE is
expressive, programmable, and uses the underlying hardware to
dynamically distribute execution resources between application
and ACF code. Like hardware approaches, DISE need not pay
the cost of transforming a program binary. DISE’s hardware
components require modest, localized changes to the decoding
pipeline and in some cases can use existing hardware structures.

Our experiments show that DISE has (often significantly)
better performance than software-based ACF implementations,
and architectural trends suggest DISE’s advantages will grow
with time. In addition, DISE performance is competitive with
that of hardware-only ACF implementations. Of course, DISE’s
clear advantage over these is its general-purpose nature.

There are several avenues for future work. DISE currently
uses a small, expressive set of features—parameterized matching
and replacement, dedicated register storage—to support many
ACFs. As our experience with DISE grows and more ACFs are
implemented, this set may be generalized or expanded. For
instance, the incorporation of runtime data values as replacement
instruction constants has applications in dynamic code optimiza-
tion. Streamlining the hardware implementation, refining the
interface, and better integration with the OS are important as
well. A final area is the construction of tools for managing DISE-
style ACF code, including routines for safety-analysis and com-
position, and even ACF-specific languages.

Acknowledgments
We thank the anonymous referees for their suggestions.

Amir Roth is supported by NSF award CCR-0238203.

References
[1] A. Agarwal, R. Sites, and M. Horowitz. “ATUM: A New Tech-

nique for Capturing Address Traces Using Microcode.” In
ISCA-13, May 1986.

[2] V. Bala, E. Duesterwald, and S. Banerjia. “Dyanmo: A trans-
parent dynamic optimization system.” InPLDI-2000, Jun.
2000.

[3] T. Ball and J. Larus. “Optimally Profiling and Tracing Pro-
grams.” InPOPL-19, 1992.

[4] M. Bernaschi, E. Gabrielli, and L. Mancini. “Operating System
Enhancements to Prevent the Misuse of System Calls.” InCCS-
7, 2000.

[5] D. Burger and T. Austin. “The SimpleScalar Tool Set, Version
2.0.” Technical Report CS-TR-97-1342, University of Wiscon-
sin-Madison, Jun. 1997.

[6] R. E. Calcagni and W. Sherwood. “Patchable Control Store for

Reduced Microcode Risk in a VLSI VAX Microcomputer.” In
17th Microprogramming Workshop, 1984.

[7] Y. Chou, J. Fung, and J. Shen. “Reducing Branch Mispredi
tion Penalties via Dynamic Control Independence Detection
In ICS-13, Jun. 1999.

[8] M. Corliss, E. Lewis, and A. Roth. “DISE: Dynamic Instruction
Stream Editing.” Technical Report MS-CIS-O2-24, University
of Pennsylvania, Jul. 2002.

[9] G. Desoli, N. Mateev, E. Deusterwald, P. Faraboschi, an
J. Fisher. “DELI: A New Run-Time Control Point.” InMICRO-
35, Nov. 2002.

[10] K. Diefendorf. “K7 Challenges Intel.”Microprocessor Report,
12(14), Nov. 1998.

[11] K. Ebcioglu and E. Altman. “DAISY: Dynamic Compilation
for 100% Architectural Compatibility.” InISCA-24, Jun. 1997.

[12] P. Glaskowsky. “Pentium 4 (Partially) Previewed.”Micropro-
cessor Report, 14(8), Aug. 2000.

[13] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Egger
“Annotation-Directed Run-Time Specialization in C.” In
PEPM-97, Jun. 1997.

[14] L. Gwenapp. “Intel’s P6 Uses Decoupled Superscalar Design
Microprocessor Report, 9(2), Feb. 1995.

[15] L. Gwenapp. “Nx686 Goes Toe-to-Toe with Pentium Pro.”Mi-
croprocessor Report, 14(9), Oct. 1995.

[16] L. Gwenapp. “P6 Microcode can be Patched.”Microprocessor
Report, 11(12), Sept. 1997.

[17] T. Halfhill. “Transmeta Breaks x86 Low-Power Barrier.”Mi-
croprocessor Report, Feb. 2000.

[18] I. Kim and M. Lipasti. “Implementing Optimizations at Decode
Time.” In ISCA-29, May 2002.

[19] J. R. Larus and E. Schnarr. “EEL: Machine-Independent Ex
cutable Editing.” InPLDI-95, June 1995.

[20] C. Lefurgy, P. Bird, I.-C. Cheng, and T. Mudge. “Improving
Code Density Using Compression Techniques.” InMICRO-30,
Dec. 1997.

[21] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Holling-
sworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and
T. Newhall. “The Paradyn Parallel Performance Measureme
Tools.” IEEE Computer, 28(11), 1995.

[22] R. Nair and M. Hopkins. “Exploiting Instruction Level Parallel-
ism in Processors by Caching Scheduled Groups.” InISCA-24,
Jun. 1997.

[23] T. Rauscher and A. Argawala. “Dynamic problem-oriented re
definition of computer architecture via microprogramming.
IEEE Transactions on Computers, C-27(11), 1978.

[24] T. Reps. “The Use of Program Profiling in Software Testing.
In Informatik’97. Springer-Verlag, Sep. 1997.

[25] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy,
B. Bershad, and B. Chen. “Instrumentation and Optimization
Win32/Intel Executables Using Etch.” InUSENIX Windows NT
Workshop, August 1997.

[26] T. Rooker. “The Reference Monitor: An Idea Whose Time Ha
Come.” In1993 Workshop on New Security Paradigms, 1993.

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, an
T. Anderson. “Eraser: A Dynamic Race Detector for Multi-
Threaded Programs.”ACM Transactions on Computer Systems,
15(4), Nov. 1997.

[28] D. Scales, K. Gharachorloo, and C. Thekkath. “Shasta: A Lo
Overhead, Software-Only Approach for Supporting Fine-Gra
Shared Memory.” InASPLOS-7, Oct. 1996.

[29] R. Sites.Alpha Architecture Reference Manual. Digital Press,
1992.

[30] A. Srivastava and A. Eustace. “ATOM: A System for Building
Customized Program Analysis Tools.” InPLDI-94, Jun. 1994.

[31] J. Turley. “Alpha Runs X86 Code with FX!32.”Microproces-
sor Report, 10(3), 1996.

[32] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. “Efficien
software-based fault isolation.” InSOSP-14, Dec. 1993.

[33] D. Wallach, D. Balfanz, D. Dean, and E. Felten. “Extensibl
Security Architectures for Java.” InSOSP-16, 1997.

[34] A. Wolfe and A. Chanin. “Executing compressed programs o
an embedded RISC architecture.” InMICRO-25, 1992.

[35] C. Zilles and G. Sohi. “A Programmable Co-processor for Pro
filing.” In HPCA-7, Jan. 2001.

	1. Introduction
	2. DISE
	2.1. Engine Functionality
	Matching and replacement
	Dedicated registers
	Replacement sequence semantics
	Explicit tagging and DISE usage modes

	2.2. Engine Implementation
	Basic structures
	Pipeline organization
	Control and DISEPC

	2.3. Interface and System Architecture
	Controller
	OS kernel

	3. ACF Formulations in DISE
	3.1. Transparent ACFs
	Memory fault isolation
	Other transparent ACFs

	3.2. Aware ACFs
	Dynamic code decompression
	Other aware ACFs.

	3.3. ACF Composition
	Composition semantics
	Transparent with transparent.
	Aware with aware.
	Transparent with aware.

	4. Experimental Evaluation
	4.1. Memory Fault Isolation
	DISE formulation
	DISE implementation
	Cache size and processor width

	4.2. Dynamic Code Decompression
	DISE features
	Performance
	RT size

	4.3. Composing Decompression and Fault Isolation
	Performance
	RT size and miss latency

	5. Related Work
	Hardware translation/expansion
	Hardware ACF implementations
	Software translation/expansion
	Software ACF implementations
	ACF interfaces

	6. Conclusion
	Acknowledgments
	References
	DISE: A Programmable Macro Engine for Customizing Applications

