
A Study of Common Pitfalls in
Simple Multi-Threaded Programs

Sung-Eun Choi
�

E Christopher Lewis†

Los Alamos National Laboratory Department of Computer Science & Engineering
Advanced Computing Laboratory University of Washington

P.O. Box 1663, MS B287 Box 352350
Los Alamos, NM 87545 USA Seattle, WA 98195-2350 USA

Abstract

It is generally acknowledgedthat developingcorrect multi-
threadedcodesis difficult,becausethreadsmayinteractwith
each otherin unpredictableways.Thegoalof thiswork is to
discover commonmulti-threadedprogrammingpitfalls, the
knowledge of which will be useful in instructing new pro-
grammers and in developingtools to aid in multi-threaded
programming. To this end,we studymulti-threadedappli-
cationswritten by studentsfromintroductoryoperating sys-
temscourses.Althoughtheapplicationsare simple, careful
inspectionand the useof an automaticracedetectiontool
reveal a surprisingquantityand variety of synchronization
errors. We describeand discusstheseerrors, evaluatethe
roleof automatedtools,andproposenew toolsfor usein the
instructionof multi-threadedprogramming.

1 Introduction

Multi-threadingis a powerful programmingparadigm,use-
ful in many problemdomains.It is a convenientstructuring
tool for applicationsthat are logically comprisedof asyn-
chronouscomponents,suchaswindowing applicationsand
operatingsystemservices.Multi-threadingis alsoappropri-
atefor expressingfinegrainsharingsuchasthatarisingfrom
dataparallelcomputationsin which threadssimultaneously
performnearly the samecomputationon differentdata. In

�
Los AlamosNationalLaboratory, anaffirmative action/equal

opportunityemployer, is operatedby the University of California
for theUnitedStatesDepartmentof EnergyundercontractW-7405-
ENG-36.LANL publication:LA-UR-99-6365.

†E Lewis wassupportedin partby a Bradley DissertationFel-
lowship.

From Proceedingsof the Thirty-first ACM SIGCSE
Technical Symposiumon ComputerScienceEducation,
March2000.Austin,TX USA.

fact, direct supportfor very fine grain multi-threadinghas
evenbeenimplementedin hardware[1].

Although multi-threadingprovides a conceptuallysimple
abstraction,in practice,multi-threadedprogrammingis chal-
lenging,becausethreadsinteractwith eachother in unpre-
dictableways. Multiple threadsusuallysharedata,requir-
ing synchronizationto managetheir interaction. Synchro-
nizationmustensureadeterministicoutcomeindependentof
how threadsarescheduledor how their instructionstreams
areinterleaved.

Thispaperdescribesexperiencesfrom analyzingacollection
of simple multi-threadedprograms. We evaluate180 pro-
gramswritten by studentswho werenew to multi-threaded
programming.We describethe commonerrorsanddiscuss
their origins. We usethis catalogof errorsto outline prin-
ciples to abideby when writing multi-threadedprograms.
Finally, we discussour experienceswith Eraser[6], an au-
tomatic, dynamicracedetectiontool, and the potentialfor
otherusefuldebuggingtools.

The resultsdiscussedin this paperwill be of use to edu-
cators,programdevelopers,and tool developers. Educa-
tors can teachcommonpitfalls and instill good habits for
multi-threadedprogramming. Programdeveloperscanbe-
comeawareof commonerrorsandthepotentialcauses.Tool
developerscantailor their toolsto thetypesof errorsthatoc-
cur in practiceanddevelopnew toolsfor thetypesof errors
we havefoundby manualinspection.

This paperis organizedas follows. The next sectionde-
scribesour experimentalcontext. Section3 presentsthe re-
sults of analyzingthe multi-threadedapplicationsand the
role of Eraserin finding errorsin the programs.Section4
describesthepotentialuseof toolsbasedon our experience
with Eraser. Thefinal sectiongivesconclusions.

2 Experimental Context

In this sectionwe describethemulti-threadedprogramsuite
usedin this study, andwe summarizethe processby which
they wereevaluatedby inspectionandvia theErasertool.



��������� 	�

��� �������
�����
� �
�����
���������   ��! "�#
$ %
&�! � ' ' �)(�*���+ ��! ,

-/. ��	�0�1������ 2�

��� �������
�����
� (���*3&�4�5
��! ��(
"
*���' ��6���(�,

780�1��

/9 -/.�: ����;<���
�����
�  ��! + " =�$ ��> ��" ( ' &�! ' " ( ' ��4
" � ' # ? ,

����@A���������
� & ' ��*�$ #8' � ( ' B &��
��B (�� ' ,

Figure 1: Structureof the CSE451 threadsproject. Each
layer builds on the layersbelow it. We consideredcodes
the studentswrote for the applicationand synchronization
layers.

2.1 Program Suite

Theevaluationprogramsuitecomesfrom studentprogram-
mingprojectsfromthreeofferingsof theUniversityof Wash-
ingtonintroductoryoperatingsystemscourse(CSE451)[2].
Over threequartersthe coursewas taughtby two different
instructorswith four differentteachingassistants(including
the authors),but an identicalprogrammingprojectwasas-
signed.Theprojectassignmentswerematureandwell orga-
nized,andthe studentsimplementedtheir projectsin the C
programminglanguage.

The studentswere chargedwith writing a small user-level
threadssystemand applicationsto exploit it. The project
familiarizedstudentswith operatingsystemsissues;andfor
most,it wastheir first encounterwith threads,synchroniza-
tion mechanismsand, often times, seriousprogramming.
Building upon an atomic test-and-setroutine, they imple-
mentedsupport for threadcreation,scheduling,etc., and
they provided synchronizationsupportvia semaphoresand
mutexeswith conditionvariables. In addition, they imple-
mentedtwo multi-threadedapplications:a boundedbuffer
application [7, page109] and a solution to the cigarette
smoker problem[7, page212]. Figure 1 summarizesthe
project’s principle abstractions.Although the studentsim-
plementedthe top threelevels, we only examinedthe ap-
plication andsynchronizationportionsof theprojectin this
study.

2.2 Inspection

Virtually all of the programswe examinedproducedcor-
rectoutput,but this alonedid not ensurethat they werecor-
rect. The students’programswere sufficiently simple and
shortthatcarefulinspectby anexperiencedprogrammerre-
vealedthe synchronizationerrorsthey contained.Both au-
thorshave takenandservedasteachingassistantfor the in-
troductoryoperatingsystemscourse,so they areintimately
familiarwith theprojectandmulti-threadedprogrammingin
general. Eachprogramwasindependentlyexaminedtwice
to identify errors.

2.3 Eraser

We used Eraser to automaticallyevaluate the programs.
Eraseris a tool for finding data racesin Pthreadsmulti-
threadedprogramsthat synchronizevia locking [6]. It dy-
namicallychecksthatconcurrentaccessesto shareddataob-
serve a consistentlocking discipline.Eraserimplementsthe
lock setalgorithmto identify races[6]. This algorithmdy-
namicallymaintainsa candidatesetof locksfor eachpoten-
tially sharedword. All locks that may protecta word ap-
pearin theword’scandidatelock set. Initially, eachlock set
containsall locks. On every accessto shareddata,the lock
setassociatedwith the datais replacedby the intersection
of itself andthe locks currentlyheld. If the candidatelock
set ever becomesempty, a race is flagged,for the associ-
ateddatais unprotected.Erasersupportsa setof program-
mer annotationsto inhibit falsepositiveswhenusing non-
Pthreadssynchronizationmechanisms.Eraserinstruments
a programbinary’s loads,storesandPthreadslibrary calls
usingATOM [8], abinaryrewriting tool for theDECAlpha.

Erasercould not be directly appliedto students’programs,
becausethey were not Pthreadsapplications. We trans-
formedtheminto Pthreadsapplicationsby rewriting theab-
stractionson which they were built in terms of Pthreads
primitives.For example,in orderto evaluatetheapplication
level programswith Eraser, we linkedthemwith semaphore
andmutex codesimplementedin termsof Pthreadsprimi-
tives.Weonly evaluatedtheapplicationandsynchronization
level codes,becausethethreadsystemcodeachievedatom-
icity via interruptdisabling,which Eraseris not equippedto
handle.

3 Pitfalls

We discovereda greatmany synchronizationerrors in the
programswe examined. In this section,we enumerateand
discusstheerrorsandourexperiencewith Eraser.

3.1 Errors

The errors we detectedfall into one of three categories.
They are dataraces,deadlockor miscellaneous,eachdis-
cussedbelow. We examinedfour applications(semaphore,
mutex, boundedbuffer, andcigarettesmoker) from eachof
54 projectgroups(becauseof submissionor interfaceprob-
lemsweonly considered180applications,not thetotal216).
Figure 2 summarizesour findings. We discoverederrors
in 56 applications. Twenty-threecontaineddataraces,23
deadlockedand28 exhibitedmiscellaneoussynchronization
problems.

Data Races. A data raceconditionexists whenmultiple
entities(in thiscasethreads)concurrentlyreadandwrite the
samedata,andtheoutcomeof theexecutiondependson the
particularorder in which the accessestake place[7, page
165]. Theentitiesmustsynchronizeto avoid raceconditions.



programs data dead- Eraser
w/ errors race lock misc. false C

semaphore 19of 46 2 7 19 3
mutex 18of 40 5 12 8 0

boundedbuf. 5 of 46 3 1 0 0
cig. smoker 14of 48 13 3 1 1

total 56 of 180 23 23 28 4

Figure2: Summaryof errors.A total of 180programswere
examined. Someprogramshadmore than one type of er-
ror. Multiple instancesof a singletype of error in a single
applicationwerecountedonce.

We discovered23 dataraces,mostof which werebenign.

Nine of the dataraceswe discoveredwerebenign,because
readsand writes of integerswere atomic on the students’
hardwareplatform. Somestudentsdid not uselocks when
readingsharedintegers. Furthermore,somedid not protect
writesof sharedintegerswhentherewasonly asinglewriter.
We do not recommendthat beginning multi-threadedpro-
grammersmakesuchatomicityassumptions.

Theremainingdataraceseffectedcorrectness.(i) Themost
obvious sourceof a dataracewaswhena shared variable
was not protectedby a lock. It appearedthat somestu-
dentswereconfusedaboutwhatdatawasshared.Nine pro-
gramssufferedfrom this problem. (ii) Similarly, dataraces
arosewhena lock wasnotacquiredto protectanaccesseven
thoughoneexisted. Most frequentlythis happenedwhena
lock wasacquiredoutsidea loop,but releasedwithin. Three
programscontainedthis error. (iii) Data racesalso arose
from accidentalsharing: onegroupmadewhatshouldhave
beenanautomaticvariable(i.e., on thestack)global,thusit
wasunintentionallysharedby all threadswithoutbeingpro-
tectedby a lock. (iv) Oneprogramprematurely releaseda
lock, suggestingthat the studentwasnot entirely certainof
what accessesneededto be protectedby the lock. (v) An-
otherprogramcontainedredundant,unprotectedinitializa-
tion of sharedvariables. (vi) One programusedmultiple
locks to protecta singlesharedvariable,but only oneat a
time. Specifically, readersandwriters of a sharedvariable
useddifferentlocks, thustherewasno synchronizationbe-
tweenthetwo classesof threads.

Deadlock. Deadlock occurswhen a multi-threadedpro-
gramis unableto makeprogressbecausea threadis waiting
for a conditionthatwill never happen.Twenty-threeof the
programssufferedfrom intermittentdeadlock.

Deadlockarosein 11 programsbecausethey containeda
non-atomicunlock-and-stoproutine.This routinereleasesa
lock,placestherunningthreadonaqueue,andblocks.If the
threadis preemptedbetweenthesecondandthird steps,an-
otherthreadmayreschedulethefirst threadbeforeit blocks.
In this case,the first threadruns and immediatelyblocks,
never to be awakened.Deadlockalsooccurredin two pro-

gramswheresignalswere lost. This happenedwhen one
threadsignaledathreadthathadnotyet issuedawait. When
thewait is eventuallyissued,it is neversignalledagain.Both
of thesedeadlockcasessuggesta lack of understandingof
someof the more subtleissuesof multi-threadingand the
implicationsof preemption.

Deadlockalsoarosein two programswhenthey usedanin-
correctconditionalto spinon a test-and-setlock. Deadlock
resultedin eightprogramsfor oneof thefollowing reasons:
(i) unrelatedlockswereusedto protecta singlesharedvari-
able,(ii) test-and-setprimitiveswereconfusedwith mutexes
attheapplicationlevel, (iii) lockswerenoteverreleased,and
(iv) threadstried to reacquirelocksthatthey alreadyheld.

A frequentlycited exampleof deadlockis when thereis a
circular dependencebetweenthreadswaiting for locks [3,
5]. Noneof the programsexhibited this form of deadlock,
exceptthe trivial casewhena threadattemptedto acquirea
lock it alreadyheld. We expect that circular dependences
aremorecommonin larger applications,but they arenot a
primaryconcernfor beginningmulti-threadedprogrammers.

Miscellaneous. There were a number of miscellaneous
synchronizationproblems.Unnecessaryuseof interruptdis-
abling and lock acquisitionandreleasewasthe mostcom-
monerrorin thiscategory. Fourteenprogramssufferedfrom
this problem,suggestingthat studentsdid not have confi-
dencein theiruseof locks,sothey tried to patchup thecode
(andmakeit correct)by disablinginterrupts.It alsosuggests
anunsophisticatedunderstandingof locking. This approach
never correctedany problemsandwaseven found in appli-
cationsthatwereotherwisecorrect.

Anotherproblemwastheuseof a singleglobal lock to pro-
tect all shareddata. Four programscontainedthis prob-
lem. We suspectthat this comesfrom morethanjust lazi-
ness;somestudentsdid notunderstandthatonly relateddata
shouldbe protectedunderonelock. This is often a benign
problem,but it canleadto lock contention.The remaining
10 errorswere due to inappropriatelocking: (i) assuming
thattheunlock-and-stoproutinereturnswith thetest-and-set
lock re-acquiredand(ii) needlesslyunlockingthesamelock
repeatedly.

3.2 Experience with Eraser

WhenEraserwasappliedto theprogramsuite,it detected27
races,23 of which we have alreadydiscussed,above. The
remainingfour were falsepositives. Threeprogramsim-
plicitly “pass” a lock from onethreadto another. In other
words, the threadthat acquiresthe lock doesnot release
it with the understandingthat anotherthreadwill proceed
assumingthat it hasthe lock. The secondthreadmay re-
leasethe lock or passit to anotherthread. Birrell recom-
mendsthat lock passingnever be useddueto the difficulty
of verifying the correctnessof suchcode[3]. On the other



hand,lock passingreducesthenumberof callsinto thelock-
ing routines,D which indirectly reducesthe amountof work
the threadschedulerperforms. Moreover, if lock passing
is usedexclusively, an applicationcanaffectively take con-
trol of threadscheduling.Obviously this is not a synchro-
nizationmechanismfor thenaive, but if Eraserunderstands
sucha synchronizationmechanism,it mayprove usefulfor
moreadvancedprogrammerswho areconcernedaboutper-
formance. A straightforward useof the EraserWrite-
Lock andEraserWriteUnlock annotationswill tell the
Eraserruntimesystemthepoint at which a threadno longer
assumesownershipof the lock (effectively releasingit) as
well asthe dual for the threadthat receivesthe lock (effec-
tively acquiringthelock).

A falseracewasalsoreportedwhenthreadsaccesseda cir-
cular buffer throughprotected“front” and “back” pointers
into thebuffer. This is not a racebecausethebuffer is only
accessedthroughthe “front” or “back” pointers. Savageet
al. describeasimilar falsepositive,which they eliminatevia
theEraserReuse annotation[6]. We cando thesame.

An unintendedsideeffectof runninganEraserinstrumented
binary is that the instrumentationchangesthe timing char-
acteristicsof the program. This aloneexposeddeadlockin
a greatmany programsthat consistentlyran to completion
without instrumentation.

3.3 Discussion

Eraserwasenormouslyuseful in this study. Even in these
simplecodeserrorswerecommonandtediousto find man-
ually. Thestudentsgenerallybelievedtheir codeswerecor-
rect,andtheteachingassistantsoftendid not find theerrors,
becausetherewasno feedbacksuggestingthatan error ex-
isted. Eraser’s primaryvaluewasin discoveringraceseven
when a particular threadschedulingdid not reveal a data
race. Despitethe simplicity of theseprograms,we believe
a significant fraction of the racescamefrom carelessness,
which Eraserwaswell-equippedto uncover. Eraser’s value
in finding theseerrorsgrowswith programcomplexity.

Programmersmay help detectothererrorsthroughthe use
of assertions.For example,if the programmersassertthat
a lock is held beforeit is released,they will discover cases
wherea lock is beingreleasedrepeatedly. Many of theother
errorscamefrom alackof understandof theissuesof multi-
threadedprogramming.Eraseris still valuable,for it forces
programmersto understandtheir programswell enoughto
interpretEraser’s finding andcorrecttheir errors. Without
Eraserstudentsaremorelikely tocrosstheirfingersandhope
their programworks.

We recommendthatnew programmersbeawareof theroles
of correctnessandefficiency in writing multi-threadedpro-
grams. Birrell advisesfirst developing a correct solution
whichmaylaterbeoptimized,ratherthandevelopinganop-
timizedsolutionwhich maylaterbemadecorrect[3]. Once

correctnessis achieved,refinementcanbegin if performance
studiessuggestthat it is necessary. Performancestudies
shouldbe usedthroughoutthe refinementprocessto vali-
datethe refinement’s value. A programmershouldnot ob-
fuscatethecodewithoutbenefit.We recommendinstructors
preachthis philosophy, for eventhemoreadvancedstudents
frequentlygot burnedby their own cleverness.We alsorec-
ommendthat instructorsteach mistakes,including the ones
presentedin this paper. Teachingstudentsthecommonmis-
takescandrasticallyshrinkthespaceof potentialerrors.

4 Potential for Tools

Eraserwasusefulfor analyzingtheapplicationsin theprevi-
oussection,but it is limited to detectingdataracesin codes
thatsynchronizewith locks. In thissection,weproposeother
usefultoolsanddiscussthecurrentstatusof existingtoolsfor
debuggingmulti-threadedapplications.

4.1 Other Useful Tools

This section proposethree other useful tools for multi-
threadedprogramdebugging.

Supporting other synchronization. Eraser’sgeneralityis
limited by thefact that it only considerssynchronizationby
locking. Multi-threadedparallel scientific codesoften use
moreglobal forms of synchronizationsuchasbarrier syn-
chronization, whereall threadsrendezvousataspecifiedpro-
gram point, and restrictedfork-join, wherea single thread
forks many threadsthat run to completionafterwhich con-
trol is returnedto a singlethread.An importantobservation
in both casesis that accessesto shareddatain onecontext
(betweensuccessive barriersor afterforking threadsbut be-
fore joining) do not conflict with accessesin anothercon-
text. Erasercan be extendedto handlesuchsynchroniza-
tion by resettingtheglobalstate(lock setsanddatastates)at
eachbarrieror fork. Oneimplicationof thisapproachis that
shareddatamaybeprotectedby differentlocks in different
contexts. This may have stylistic problems,but it will still
preventraces.

Deadlock detection. A common causeof deadlock in
complex applicationsis a circular dependenceof threads
waitingfor resources.Deadlockcanoftenbedetectedby the
programmerbecausethe programceasesto make progress.
Nevertheless,finding the causeof deadlockis difficult. A
tool to aid in deadlockdetectioncausedby circular de-
pendencescan be implementedusing a waits-for graphof
threadswaiting for locks; a cycle in the graph indicates
thatdeadlockhasoccurred.Deadlockconditionscausedby
threadschedulingerrorscanbedetectedwhennothreadsare
availableon thethreadsystem’s readyqueue;whenthis sit-
uationis detected,theconditionvariablescanbescannedto
identify waiting threads.Noticethatunlikewith races,these
approachesarenot guaranteedto detectall potentialdead-



lock situations.Changinga program’stiming characteristics
or forcingE frequentcontext switchescanincreasetheproba-
bility of exposingdeadlocksituations.

Performance debugging. Performance debugging in
multi-threadedprogramsis perhapsasdifficult asdebugging
for correctness.Sharingis theprimarysourceof unexpected
performance degradation in multi-threaded programs.
Statisticssuch as the averagenumberof threadswaiting
for a lock and the numberof times a lock is acquiredcan
be used to identify critical sectionsof code that should
be optimized. On machineswith multiple processorsthat
implement sharedmemory, data locality also contributes
significantly to poor performance. Information about the
physicallocationof thethreadsthatusealock andtheshared
data accessedcan also be used to pinpoint performance
bottlenecks.

4.2 Current Status of Tools

VisualThreads[4] is adiagnostictool for multi-threadedap-
plicationsthatimplementsEraser’sracedetectionalgorithm,
aswell asdeadlockdetectionandperformancestatistics.The
tool includesmany of the featurediscussedabove, yet it
is not a viable solution for the classroom.Visual Threads
is only availablefor systemsrunningDigital UNIX on Al-
phaprocessors,considereda high-endsystemfor mostcon-
sumersespeciallyeducationalinstitutions.

Thedifficulty with makingsuchtoolswidely availableis that
they typically requirebinaryinstrumentationwhich is archi-
tecturespecificby nature.A slightly lessgeneralapproachis
to providea library of datatypesandsynchronizationmech-
anismsthat have alreadybeeninstrumented.For example,
the SMARTS library [9], a C++ classlibrary for parallel
programming,implementsEraser’s racedetectionalgorithm
for its dataobjects. Shareddataobjectsinherit from the
baseclasswhich providesexplicit readandwrite methods
that modify the lock set if racedetectionis enabled. The
library also provides synchronizationmechanismsthat are
awareof the racedetector. This approachis very attractive
for theclassroomsettingbecauseit is portable,inexpensive,
andreusable.Moreover, mostprojectcoursessuchasthose
describedin the previous sectionsalreadyhave a software
base,and thus the costof implementingthe tools is amor-
tizedacrosssubsequentofferingsof thecourse.

5 Conclusion

Multi-threadingis a popularprogrammingparadigmusedin
a variety of domains. The catalogof commonerrorspre-
sentedin this papershows thatnew programmersmakesyn-
chronizationerrorsevenin programswith verysimplespec-
ifications. Thestudentsoften lackedtheexperienceandthe
teachingassistantslackedthetimeto identifysubtlesynchro-
nizationerrorsin programsthatonly failedundercertainrare
threadschedules.In fact, mostprogrammersof erroneous

codebelieved it wascorrect,for they did not get feedback
suggestingotherwise. It is our hope that the pitfalls pre-
sentedin this paperwill serve as a guide so that students
may avoid thesemistakes. Furthermore,we encouragein-
structorsto advocateoptimizationonly whencorrectnesshas
beenachieved andonly whenperformancestudiesdemon-
stratesignificantimprovement.

Finally, we have found that automatedtools, such as the
Eraserdynamicracedetector, canbea valuableresourcesin
debuggingmulti-threadedprograms.Erasergivesfeedback
for erroneousprogramseven if a particularthreadschedule
doesnotrevealit. Thishelpsprogrammersidentify theirsyn-
chronizationbugs.Furthermore,it servesasa startingpoint
for reasoningaboutandcorrectingerroneouscode. We be-
lievethatthereareopportunitiesfor thedevelopmentof other
automatedtools—suchas thosediscussedin this paper—
to assistin multi-threadedprogramming,particularlyin the
classroom.

Acknowledgments. WethankStefanSavagefor hisEraser
savvy andBrian Bershadfor theinspiration.

References
[1] Alverson, R., Callahan, D., Cummings, D., Koblenz, B.,

Porterfield,A., andSmith,B. TheTeracomputersystem. In
Proceedingsof the 1990ACM SIGARCHInternationalCon-
ferenceon Supercomputing(ICS’90) (June1990),pp.1–6.

[2] Bershad, B., and Levy, H. M. CSE 451: Intro-
duction to operating systems. University of Wash-
ington Department of Computer Science and Engineer-
ing. Spring 1996, Autumn 1996, and Winter 1997.
http://www.cs.washington.edu/education/courses/451/.

[3] Birrell, A. D. An introductionto programmingwith threads.
Tech.Rep.35, Digital EquipmentCorporation,SystemsRe-
searchCenter, January1989.

[4] CompaqComputerCorporation. Visual threadshomepage.
http://www.unix.digital.com/visualthreads/.

[5] Ousterhout,J. K. Why threadsarea badidea(for mostpur-
poses).Invited talk at 1996USENIX Conference,Jan.1996.
http://www.scriptics.com/people/john.ousterhout/threads.ps.

[6] Savage,S., Burrows, M., Nelson,G., Sobalvarro,P., andAn-
derson,T. Eraser: A dynamicdataracedetectorfor multi-
threadedprograms.Transactionson ComputerSystems15, 4
(November1998),391–411.

[7] Silberschatz,A., andGalvin, P. Operating SystemsConcepts,
Fourth Edition. Addison-Wesley, 1994.

[8] Srivastava, A., andEustace,A. ATOM: A systemfor build-
ing customizedprogramanalysistools. In Proceedingsof the
1994ACM SIGPLANConferenceon ProgrammingLanguage
DesignandImplementation(PLDI ’94) (1994),pp.196–205.

[9] Vajracharya,S.,Karmesin,S.,Beckman,P., Crotinger, J.,Mal-
ony, A., Shende,S., Oldehoeft,R., andSmith,S. SMARTS:
Exploiting temporallocality andparallelismthroughvertical
execution. In Proceedingsof the 1999 ACM SIGARCHIn-
ternational Conferenceon Supercomputing(ICS ’99) (June
1999),pp.302–310.


