A Study of Common Pitfalls in
Simple Multi-Threaded Programs

Sung-Eun Choi*

Los Alamos National Laboratory
Advanced Computing Laboratory
P.O. Box 1663, MS B287
Los Alamos, NM 87545 USA

Abstract

It is generlly acknowled@d that developingcorrect multi-

threadedcodesds difficult, becausehreadsmayinteractwith

ead otherin unpredictableways.Thegoal of thisworkis to

discorer commonmulti-threadedprogrammingpitfalls, the
knowledg of which will be usefulin instructing new pro-

grammes and in developingtoolsto aid in multi-threaded
programming To this end, we study multi-threadedappli-

cationswritten by studentdromintroductoryopemting sys-
temscourses. Althoughthe applicationsare simple careful

inspectionand the use of an automaticrace detectiontool

reveal a surprising quantity and variety of syndronization
errors. We describeand discusstheseerrors, evaluatethe
role of automatedools,and proposenew toolsfor usein the
instructionof multi-threadedorogramming

1 Introduction

Multi-threadingis a powerful programmingparadigm,use-
ful in mary problemdomains.It is a convenientstructuring
tool for applicationsthat are logically comprisedof asyn-
chronouscomponentssuchaswindowing applicationsand
operatingsystemservices.Multi-threadingis alsoappropri-
atefor expressindine grainsharingsuchasthatarisingfrom
dataparallelcomputationsn which threadssimultaneously
performnearly the samecomputationon differentdata. In

*Los AlamosNationalLaboratory anaffirmative action/equal
opportunityemplagyer, is operatedby the University of California
for theUnited StatesDepartmenof Enegy undercontractW-7405-
ENG-36.LANL publication:LA-UR-99-6365.

TE Lewis wassupportedn partby a Bradley DissertatiorFel-
lowship.

From Proceedingsof the Thirty-first ACM SIGCSE
Tedhnical Symposiunon ComputerScienceEducation
March2000.Austin, TX USA.

E Christopher Lewis’

Department of Computer Science & Engineering

University of Washington
Box 352350
Seattle, WA 98195-2350 USA

fact, direct supportfor very fine grain multi-threadinghas
evenbeenimplementedn hardware[1].

Although multi-threadingprovides a conceptuallysimple
abstractionin practice multi-threadegrogrammings chal-

lenging, becauseahreadsinteractwith eachotherin unpre-
dictableways. Multiple threadsusually sharedata, requir

ing synchronizatiorto managetheir interaction. Synchro-
nizationmustensureadeterministicoutcomendependenof

how threadsare schedulecbr how their instructionstreams
areinterleaved.

Thispaperdescribegxperiencegrom analyzingacollection
of simple multi-threadedprograms. We evaluate180 pro-

gramswritten by studentavho were new to multi-threaded
programming.We describethe commonerrorsanddiscuss
their origins. We usethis catalogof errorsto outline prin-

ciples to abide by when writing multi-threadedprograms.
Finally, we discussour experienceswith Eraser[6], an au-

tomatic, dynamicrace detectiontool, andthe potentialfor

otherusefuldebuggingtools.

The resultsdiscussedn this paperwill be of useto edu-
cators, programdevelopers,and tool developers. Educa-
tors can teachcommonpitfalls and instill good habitsfor
multi-threadedprogramming. Programdeveloperscan be-
comeawareof commonerrorsandthe potentialcausesTool
developerscantailor theirtoolsto thetypesof errorsthatoc-
curin practiceanddevelopnew toolsfor thetypesof errors
we have found by manualinspection.

This paperis organizedas follows. The next sectionde-

scribesour experimentalcontext. Section3 presentghere-

sults of analyzingthe multi-threadedapplicationsand the

role of Eraserin finding errorsin the programs. Section4

describeghe potentialuseof tools basedon our experience
with Eraser Thefinal sectiongivesconclusions.

2 Experimental Context

In this sectionwe describethe multi-threadedorogramsuite
usedin this study andwe summarizehe procesdy which
they wereevaluatedby inspectionandvia the Erasertool.

APPLICATION LEVEL
(bounded buffer, cigarette smoker)

SYNCHRONIZATION LEVEL
(semaphores, mutexes)

THREAD SYSTEM LEVEL
(fork, yield, start, stop, etc.)

Low LEVEL
(atomic test-and-set)

Figure 1: Structureof the CSE 451 threadsproject. Each
layer builds on the layersbelow it. We consideredcodes
the studentswrote for the applicationand synchronization
layers.

2.1 Program Suite

The evaluationprogramsuite comesfrom studentprogram-
ming projectsrom threeofferingsof the Universityof Wash-
ingtonintroductoryoperatingsystemgoursg(CSE451)[2].

Over threequartersthe coursewas taughtby two different
instructorswith four differentteachingassistantgincluding
the authors),but an identical programmingprojectwas as-
signed.Theprojectassignmentaerematureandwell orga-
nized,andthe studentdmplementedheir projectsin the C
programminganguage.

The studentswere chaiged with writing a small userlevel

threadssystemand applicationsto exploit it. The project
familiarizedstudentswith operatingsystemdssuesandfor

most,it wastheir first encountemwith threads synchroniza-
tion mechanismsand, often times, seriousprogramming.
Building upon an atomic test-and-setoutine, they imple-

mentedsupportfor thread creation, scheduling,etc, and
they provided synchronizatiorsupportvia semaphoreand
mutexeswith conditionvariables. In addition, they imple-

mentedtwo multi-threadedapplications: a boundedbuffer

application[7, page 109] and a solution to the cigarette
smoler problem|[7, page212]. Figure 1l summarizeshe

projects principle abstractions.Although the studentsm-

plementedthe top threelevels, we only examinedthe ap-

plication and syndironizationportionsof the projectin this

study

2.2 Inspection

Virtually all of the programswe examinedproducedcor-
rectoutput,but this alonedid not ensurethatthey werecor-
rect. The students’programswere sufficiently simple and
shortthatcarefulinspectby anexperiencegrogrammere-
vealedthe synchronizatiorerrorsthey contained.Both au-
thorshave taken andsened asteachingassistanfor thein-
troductoryoperatingsystemscourse,so they areintimately
familiar with the projectandmulti-threadegrogrammingn
general. Eachprogramwasindependentlyexaminedtwice
to identify errors.

2.3 FEraser

We used Eraserto automatically evaluate the programs.
Eraseris a tool for finding dataracesin Pthreadsmulti-
threadedorogramsthat synchronizevia locking [6]. It dy-
namicallycheckshatconcurrenticcesse® shareddataob-
sene a consistentocking discipline. Eraserimplementshe
lock setalgorithmto identify races[6]. This algorithmdy-
namicallymaintainsa candidatesetof locksfor eachpoten-
tially sharedword. All locks that may protecta word ap-
pearin theword’s candidatdock set. Initially, eachlock set
containsall locks. On every accesgo shareddata,the lock
setassociatedvith the datais replacedby the intersection
of itself andthe locks currentlyheld. If the candidatdock
setever becomesmpty a raceis flagged,for the associ-
ateddatais unprotected.Erasersupportsa setof program-
mer annotationgo inhibit false positveswhen using non-
Pthreadssynchronizatiormechanisms.Eraserinstruments
a programbinary’s loads, storesand Pthreaddibrary calls
usingATOM [8], abinaryrewriting tool for the DEC Alpha.

Erasercould not be directly appliedto students’programs,
becausethey were not Pthreadsapplications. We trans-
formedtheminto Pthreadspplicationsy rewriting the ab-
stractionson which they were built in terms of Pthreads
primitives.For example,in orderto evaluatethe application
level programswith Eraseywe linkedthemwith semaphore
and mutex codesimplementedn termsof Pthreadprimi-
tives.We only evaluatedheapplicationandsyndironization
level codes becausehethreadsystemcodeachieved atom-
icity via interruptdisabling,which Eraseris not equippedo
handle.

3 Pitfalls

We discovereda greatmary synchronizatiorerrorsin the
programswe examined. In this section,we enumeratend
discusgheerrorsandour experiencewith Eraser

3.1 Errors

The errors we detectedfall into one of three cateories.
They are dataraces,deadlockor miscellaneousgachdis-
cussedbelon. We examinedfour applications(semaphore,
mutex, boundedbuffer, andcigarettesmoler) from eachof
54 projectgroups(becausef submissioror interfaceprob-
lemswe only considered 80applicationsnotthetotal 216).
Figure 2 summarizesour findings. We discovered errors
in 56 applications. Twenty-threecontaineddataraces,23
deadloclkedand?28 exhibited miscellaneousynchronization
problems.

Data Races. A datarace condition exists when multiple
entities(in this casethreads)concurrentlyreadandwrite the
samedata,andthe outcomeof the executiondepend®n the
particularorderin which the accessesake place[7, page
165]. Theentitiesmustsynchronizeo avoid raceconditions.

programs | data | dead- Eraser
w/ errors | race | lock | misc. | false+
semaphar 190f 46 2 7 19 3
mutex 180f 40 5 12 8 0
boundedouf. 50f 46 3 1 0 0
cig. smoler 140f 48 13 3 1 1
| total [560f180] 23 | 23 | 28 | 4 |

Figure2: Summaryof errors.A total of 180 programswere
examined. Someprogramshad more than onetype of er
ror. Multiple instancesf a singletype of errorin asingle
applicationwerecountedonce.

We discovered23 dataracesmostof which werebenign.

Nine of the dataraceswe discoreredwerebenign,because
readsand writes of integerswere atomic on the students’
hardware platform. Somestudentsdid not uselocks when
readingsharedntegers. Furthermore somedid not protect
writesof sharedntegerswhentherewasonly asinglewriter.
We do not recommendhat beginning multi-threadedpro-
grammersnake suchatomicityassumptions.

Theremainingdataraceseffectedcorrectness(i) The most
obvious sourceof a dataracewaswhen a shaed variable
was not protectedby a lock. It appearedhat somestu-
dentswereconfusedaboutwhatdatawasshared.Nine pro-

gramssufferedfrom this problem. (i) Similarly, dataraces
arosewhenalock wasnotacquiredto protectanacces&ven
thoughone existed. Most frequentlythis happenedvhena
lock wasacquiredoutsidea loop, but releasedvithin. Three
programscontainedthis error. (iii) Data racesalso arose
from accidentalsharing onegroupmadewhat shouldhave

beenanautomaticvariable(i.e., on the stack)global, thusit

wasunintentionallysharedoy all threadswithout beingpro-

tectedby alock. (iv) Oneprogramprematuely releaseda

lock, suggestinghat the studentwas not entirely certainof

whataccesseseededo be protectedby the lock. (v) An-

other programcontainedredundant,unprotectedinitializa-

tion of sharedvariables. (vi) One programusedmultiple

locks to protecta single sharedvariable,but only one at a

time. Specifically readersandwriters of a sharedvariable
useddifferentlocks, thustherewasno synchronizatiorbe-

tweenthetwo classe®f threads.

Deadlock. Deadlok occurswhen a multi-threadedpro-
gramis unableto make progresdecause threadis waiting
for a conditionthatwill never happen.Twenty-threeof the
programssufferedfrom intermittentdeadlock.

Deadlockarosein 11 programsbecausethey containeda
non-atomicunlodk-and-stoproutine. This routinereleases
lock, placegherunningthreadonaqueueandblocks.If the
threadis preemptedetweerthe secondandthird stepsan-
otherthreadmayrescheduléhefirst threadbeforeit blocks.
In this case,the first threadruns and immediatelyblocks,
never to be awakened. Deadlockalsooccurredin two pro-

gramswhere signalswere lost This happenedvhen one
threadsignaledathreadthathadnotyetissuedawait. When
thewait is eventuallyissuedit is neversignalledagain.Both
of thesedeadlockcasessuggest lack of understandingf
someof the more subtleissuesof multi-threadingand the
implicationsof preemption.

Deadlockalsoarosein two programsvhenthey usedanin-
correctconditionalto spinon a test-and-selock. Deadlock
resultedin eightprogramdor oneof thefollowing reasons:
(i) unrelatedockswereusedto protecta singlesharedvari-
able,(ii) test-and-seprimitiveswereconfusedwvith mutexes
attheapplicationlevel, (iii) lockswerenoteverreleasedand
(iv) threaddriedto reacquirdocksthatthey alreadyheld.

A frequently cited exampleof deadlockis whenthereis a
circular dependencdetweenthreadswaiting for locks [3,
5]. Noneof the programsexhibited this form of deadlock,
exceptthetrivial casewhena threadattemptedo acquirea
lock it alreadyheld. We expectthat circular dependences
aremorecommonin larger applications but they arenota
primaryconcerrfor beginningmulti-threadegrogrammers.

Miscellaneous. There were a number of miscellaneous
synchronizatioproblems.Unnecessaryseof interruptdis-
abling and lock acquisitionand releasewasthe mostcom-
monerrorin this catgyory. Fourteenprogramssufferedfrom
this problem, suggestingthat studentsdid not have confi-
dencen their useof locks,sothey tried to patchup thecode
(andmake it correct)by disablinginterrupts.It alsosuggests
anunsophisticatedinderstandingf locking. This approach
never correctedary problemsandwasevenfoundin appli-
cationsthatwereotherwisecorrect.

Anotherproblemwasthe useof a singlegloballock to pro-
tect all shareddata. Four programscontainedthis prob-
lem. We suspecthat this comesfrom morethanjust lazi-
ness;somestudentslid notunderstandhatonly relateddata
shouldbe protectedunderonelock. This is oftena benign
problem,but it canleadto lock contention. The remaining
10 errorswere due to inappropriatelocking: (i) assuming
thatthe unlock-and-stopoutinereturnswith thetest-and-set
lock re-acquiredand(ii) needlesslyinlockingthe sameock
repeatedly

3.2 Experience with Eraser

WhenErasemwasappliedto theprogramsuite, it detected®7
races,23 of which we have alreadydiscussedabove. The
remainingfour were false positives. Three programsim-
plicitly “pass”a lock from onethreadto another In other
words, the threadthat acquiresthe lock doesnot release
it with the understandinghat anotherthreadwill proceed
assumingthat it hasthe lock. The secondthreadmay re-
leasethe lock or passit to anotherthread. Birrell recom-
mendsthat lock passingnever be useddueto the difficulty
of verifying the correctnes®f suchcode[3]. On the other

hand,lock passingeduceghe numberof callsinto thelock-
ing routines,which indirectly reduceshe amountof work
the threadschedulemperforms. Moreover, if lock passing
is usedexclusively, an applicationcanaffectively take con-
trol of threadscheduling. Obviously this is not a synchro-
nizationmechanisnfor the naive, but if Eraserunderstands
sucha synchronizatioomechanismit may prove usefulfor
moreadvancedprogrammersvho areconcernedaboutper
formance. A straightforvard useof the Er aser Wi t e-
Lock andEr aser Wi t eUnl ock annotationwill tell the
Eraseruntimesystemthe point at which a threadno longer
assumeswnershipof the lock (effectively releasingit) as
well asthe dualfor the threadthatrecevesthe lock (effec-
tively acquiringthelock).

A falseracewasalsoreportedwhenthreadsaccessea cir-

cular buffer through protected‘front” and“back” pointers
into the buffer. Thisis not a racebecausehe buffer is only

accessedhroughthe “front” or “back” pointers. Savageet
al. describea similar falsepositive, which they eliminatevia
theEr aser Reuse annotatior{6]. We candothesame.

An unintendedideeffect of runninganEraselinstrumented
binary is that the instrumentatiorchangeghe timing char
acteristicsof the program. This aloneexposeddeadlockin
a greatmary programsthat consistentlyranto completion
withoutinstrumentation.

3.3 Discussion

Eraserwas enormouslyusefulin this study Evenin these
simplecodeserrorswere commonandtediousto find man-
ually. The studentgyenerallybelievedtheir codeswerecor-
rect,andtheteachingassistantsftendid notfind the errors,
becauseherewasno feedbacksuggestinghat an error ex-
isted. Erasers primary valuewasin discoseringraceseven
when a particularthreadschedulingdid not reveal a data
race. Despitethe simplicity of theseprograms,we believe
a significantfraction of the racescamefrom carelessness,
which Erasemwaswell-equippedo uncover. Erasers value
in finding theseerrorsgrows with programcomplexity.

Programmersnay help detectother errorsthroughthe use
of assertions.For example,if the programmersassertthat
alock is held beforeit is releasedthey will discover cases
wherealock is beingreleasedepeatedlyMany of theother
errorscamefrom alack of understanaf theissuesf multi-

threadedprogramming.Eraseris still valuable for it forces
programmergo understandheir programswell enoughto

interpretErasers finding and correcttheir errors. Without

Erasestudentaremorelik ely to crosstheirfingersandhope
their programworks.

We recommendhatnew programmerde awareof theroles
of correctnesandefficiengy in writing multi-threadedoro-
grams. Birrell advisesfirst developing a correct solution
which maylaterbe optimized ratherthandevelopinganop-
timized solutionwhich may laterbe madecorrect[3]. Once

correctnesss achieved,refinementanbegin if performance
studiessuggestthat it is necessary Performancestudies
should be usedthroughoutthe refinementprocessto vali-
datethe refinements value. A programmeishouldnot ob-
fuscatethe codewithout benefit.We recommendnstructors
preachthis philosophyfor eventhe moreadvancedstudents
frequentlygot burnedby their own clevernessWe alsorec-
ommendthatinstructorsteac mistales,includingthe ones
presentedn this paper Teachingstudentghe commonmis-
takescandrasticallyshrinkthe spaceof potentialerrors.

4 Potential for Tools

Erasewasusefulfor analyzingtheapplicationdn the previ-
oussection,but it is limited to detectingdataracesin codes
thatsynchronizewith locks. In thissectionwe proposeother
usefultoolsanddiscusghecurrentstatusof existingtoolsfor
delbuggingmulti-threadedapplications.

4.1 Other Useful Tools

This section proposethree other useful tools for multi-
threadedprogramdehugging.

Supporting other synchronization. Erasersgeneralityis
limited by thefactthatit only considersynchronizatiorby
locking. Multi-threadedparallel scientific codesoften use
more global forms of synchronizatiorsuchasbarrier syn-
chronization whereall threadsendezwousataspecifiedoro-
gram point, and restrictedfork-join, wherea single thread
forks mary threadsthatrun to completionafter which con-
trol is returnedto a singlethread.An importantobsenation
in both caseds that accesseto shareddatain one context
(betweersuccessie barriersor afterforking threadsbut be-
fore joining) do not conflict with accesse@ anothercon-
text. Erasercan be extendedto handlesuchsynchroniza-
tion by resettingheglobalstate(lock setsanddatastatest
eachbarrieror fork. Oneimplicationof this approacthis that
shareddatamay be protectedby differentlocksin different
contets. This may have stylistic problems,but it will still
preventraces.

Deadlock detection. A common causeof deadlockin
complex applicationsis a circular dependencef threads
waiting for resourcesDeadlockcanoftenbedetectedy the
programmeibecausehe programceaseso make progress.
Neverthelessfinding the causeof deadlockis difficult. A
tool to aid in deadlockdetectioncausedby circular de-
pendencegan be implementedusing a waits-for graph of
threadswaiting for locks; a cycle in the graph indicates
thatdeadlockhasoccurred.Deadlockconditionscausedy
threadschedulingerrorscanbedetectedvhennothreadsare
availableon the threadsystems readyqueuewhenthis sit-
uationis detectedthe conditionvariablescanbe scannedo
identify waiting threads Noticethatunlike with racesthese
approachesre not guaranteedo detectall potentialdead-

lock situations.Changinga programstiming characteristics
or forcing frequentcontext switchescanincreasethe proba-
bility of exposingdeadlocksituations.

Performance debugging. Performance delugging in

multi-threadegrogramss perhapsasdifficult asdelugging
for correctnessSharingis the primary sourceof unexpected
performance degradation in multi-threaded programs.
Statisticssuch as the averagenumber of threadswaiting

for a lock andthe numberof timesa lock is acquiredcan
be usedto identify critical sectionsof code that should
be optimized. On machineswith multiple processorghat

implement sharedmemory data locality also contributes
significantly to poor performance. Information aboutthe

physicallocationof thethreadghatusealock andtheshared
data accessectan also be usedto pinpoint performance
bottlenecks.

4.2 Current Status of Tools

VisualThreadd4] is adiagnostidool for multi-threadedp-
plicationsthatimplementsErasersracedetectioralgorithm,
aswell asdeadlocldetectiorandperformancestatistics.The
tool includesmary of the featurediscussedabove, yet it
is not a viable solutionfor the classroom. Visual Threads
is only availablefor systemsunning Digital UNIX on Al-
phaprocessors;onsideredh high-endsystemfor mostcon-
sumersespeciallyeducationainstitutions.

Thedifficulty with makingsuchtoolswidely availableis that
they typically requirebinaryinstrumentatiorwhichis archi-
tecturespecificby nature.A slightly lessgenerabpproachs

to provide alibrary of datatypesandsynchronizatioomech-
anismsthat have alreadybeeninstrumented.For example,
the SMARTS library [9], a C++ classlibrary for parallel
programmingjmplementsErasers racedetectionalgorithm
for its dataobjects. Shareddata objectsinherit from the
baseclasswhich provides explicit readand write methods
that modify the lock setif racedetectionis enabled. The

library also provides synchronizatiormechanismghat are
aware of the racedetector This approachis very attractve

for theclassroonsettingbecausét is portable inexpensve,

andreusable Moreover, mostprojectcoursesuchasthose
describedn the previous sectionsalreadyhave a software
base,andthusthe costof implementingthe tools is amor

tizedacrosssubsequentfferingsof the course.

5 Conclusion

Multi-threadingis a popularprogrammingparadigmusedin
a variety of domains. The catalogof commonerrorspre-
sentedn this papershavs thatnew programmersnake syn-
chronizationerrorsevenin programswith very simplespec-
ifications. The studentften lacked the experienceandthe
teachingassistanttackedthetimeto identify subtlesynchro-
nizationerrorsin programghatonly failedundercertainrare
threadschedules.In fact, mostprogrammersf erroneous

codebelievedit was correct,for they did not get feedback
suggestingotherwise. It is our hopethat the pitfalls pre-
sentedin this paperwill sere asa guide so that students
may avoid thesemistales. Furthermorewe encouragen-

structorgo adwocateoptimizationonly whencorrectneshas
beenachierzed and only when performancestudiesdemon-
stratesignificantimprovement.

Finally, we have found that automatedtools, such as the
Eraserdynamicracedetectorcanbeavaluableresourcesn
deluggingmulti-threadedorograms.Erasergivesfeedback
for erroneougprogramsevenif a particularthreadschedule
doesnotrevealit. Thishelpsprogrammergentify theirsyn-
chronizationbugs. Furthermorejt senesasa startingpoint
for reasoningaboutand correctingerroneouscode. We be-
lievethatthereareopportunitiedor thedevelopmenbf other
automatedools—suchas thosediscussedn this paper—
to assistin multi-threadedprogramming particularlyin the
classroom.

Acknowledgments. WethankStefanSaragefor hisEraser
sarvy andBrian Bershador theinspiration.

References

[1] Alverson, R., Callahan,D., Cummings, D., Koblenz, B.,
Porterfield,A., and Smith, B. The Teracomputersystem.In
Proceedingsf the 1990 ACM SIGARCHInternational Con-
ferenceon Supecomputing(ICS'90) (Junel990),pp. 1-6.

[2] Bershad, B., and Levy, H. M. CSE 451: Intro-
duction to operating systems. University of Wash-
ington Department of Computer Science and Engineer
ing. Spring 1996, Autumn 1996, and Winter 1997.
http://wwwcs.washington.edu/education/cees/451/

[3] Birrell, A. D. An introductionto programmingwith threads.
Tech.Rep. 35, Digital EquipmentCorporation,SystemsRe-
searchCenter Januaryl989.

[4] CompagComputerCorporation. Visual threadshome page.
http://wwwunix.digital.com/visualtleads/

[5] OusterhoutJ. K. Why threadsare a badidea (for mostpur
poses).Invited talk at 1996 USENIX Conference,Jan.1996.
http://wwwscriptics.com/people/john.ousterhoutéads.ps

[6] Savage,S.,Burrows, M., Nelson,G., Sobaharro, P., and An-
derson,T. Eraser: A dynamicdatarace detectorfor multi-
threadedporograms. Transactionson ComputerSystemd45, 4
(November1998),391-411.

[7] SilberschatzA., andGalvin, P. Opeating System£oncepts,
Fourth Edition. Addison-Weslegy, 1994.

[8] Srivastaa, A., andEustace A. ATOM: A systemfor build-
ing customizedprogramanalysistools. In Proceedingof the
1994 ACM SIGPLANConfeenceon ProgrammingLanguaye
DesignandImplementatiof{PLDI '94) (1994),pp. 196-205.

[9] VajracharyaS.,KarmesinS.,BeckmanP, Crotinger J.,Mal-
ony, A., ShendeS., Oldehoeft,R., and Smith, S. SMARTS:
Exploiting temporallocality and parallelismthroughvertical
execution. In Proceedingsf the 1999 ACM SIGARCHIn-
ternational Confeence on Supecomputing(ICS '99) (June
1999),pp.302-310.

