
DYNAMIC INSTRUCTION STREAM EDITING

Marc Corliss

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2006

E Christopher Lewis
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson

Acknowledgements

Many people deserve thanks for helping me navigate through my PhD. First and foremost,

I must thank my wife, Stephanie, for her loving support without which I certainly would

not have succeeded. She is a wonderful companion, and I feel like the luckiest man on the

planet to be married to her. I thank her for her patience through my many long work days,

and for helping me stay sane through my many deadlines.

My parents, Art and Nancy, were also extremely supportive throughout my six years

in graduate school. I greatly appreciated their loving phone calls, emails, and visits. They

have always been there for me. I also must thank, my brother, Ryan, my grandmother,

Barbara, as well as Stephanie’s family. Their encouragement and loving support certainly

helped me through my PhD.

My advisor, E Christopher Lewis, is chiefly responsible for my academic and profes-

sional development. I have benefitted profusely from his guidance and support. I learned

from E what it means to deeply understand a research problem, and to always consider the

broader impact of my research. E is also an incredible teacher, breaking the most com-

plicated concepts down into simple manageable pieces. I will try to emulate these skills

in my next endeavor as a professor. I am still not entirely sure why he decided to take a

chance on a lowly Master’s student with no research experience, but I am grateful that he

did. I think he would agree that it worked out wonderfully.

I also owe thanks to Amir Roth, my research collaborator and dissertation chair, who

worked with E and myself on much of this project. Amir was another important mentor

to me that I learned a great deal from. In particular, his guidance in my first three years

in graduate school was instrumental to my development as a researcher. He also provided

crucial help on this dissertation.

The third faculty member I owe thanks to is Milo Martin. Together, Milo, Amir, and

ii

E make up the faculty members of the Architecture and Compilers Group (ACG) at the

University of Pennsylvania, which has been my research home. Although I never worked

with Milo on any research projects, I have met and discussed my work and career goals

with him on countless occasions. In addition, Milo served on my dissertation committee,

and helped me a great deal in writing and completing this disssertation.

The other two members of my dissertation committee, Jonathan Smith and Calvin Lin,

were also helpful in writing this dissertation. In particular, their outside perspectives on

this work helped shape the end result.

Many students at the University of Pennsylvania made life for me much more pleasant

during graduate school. First, I must thank Gary Zhang and Sid Suri, my two closest

friends. I hope that we will remain close even as we go off in separate directions. I also

must thank Anne Bracy and Vlad Petric, two other close friends, and fellow members of

ACG who often helped me out when I was stumped in my work, especially early on. In

addition, some other students that I should thank for their friendship and support (this list

is by no means exhaustive) include Stanislav Angelov, Colin Blundell, Aaron Evans, Drew

Hilton, Andrew McGregor, Tingting Sha, Marcelo Siqueira, and Kilian Weinberger.

Finally, I should mention that this material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0311199.

iii

ABSTRACT

DYNAMIC INSTRUCTION STREAM EDITING

Marc Corliss

E Christopher Lewis

This dissertation proposes a novel, cooperative hardware/software mechanism, called

DISE (dynamic instruction stream editor), for efficiently transforming programs. DISE

transforms programs using programmable instruction macro-expansion. It resides within

the processor inspecting every fetched instruction. Based on user-defined rules, it macro-

expands some of those instructions into parameterized replacement sequences.

DISE can express a broad range of transformations including transformations for pro-

filing program characteristics, implementing interactive debugging primitives, decom-

pressing compressed programs, and detecting stack and pointer smashing attacks. This

dissertation describes the functionality, interface, and system architecture of DISE and

proposes one implementation of this architecture. Our evaluation demonstrates that DISE

transformation is highly efficient. Unlike transformation mechanisms implemented en-

tirely in software, DISE has no impact on instruction cache performance because it trans-

forms instructions within the processor. Furthermore, the performance cost of macro-

expanding instructions is neglible, which is not true of software mechanisms (although

some mechanisms transform code statically rather than at runtime). The only significant

performance cost of DISE transformation is executing the additional instructions, and this

overhead is usually less than 25% for most transformations and benchmarks.

iv

COPYRIGHT

Marc Corliss

2006

Contents

Acknowledgements ii

1 Introduction 1

1.1 Customizing Programs . 1

1.2 Customization Mechanisms . 2

1.3 DISE . 4

1.4 Example DISE Transformations . 5

1.5 Contributions . 7

1.6 Differences from Previous DISE Publications 8

1.7 Overview . 8

2 Related Work 10

2.1 Translation Mechanisms . 10

2.1.1 Compiler . 11

2.1.2 Static Binary Rewriter . 11

2.1.3 Software Dynamic Translator 12

2.1.4 Hardware Translator . 13

2.2 Ad-Hoc Hardware Widget . 14

2.3 Decoder-Based Macro Expansion . 15

2.4 Summary . 15

3 DISE Architecture 18

3.1 Functionality . 18

3.1.1 Instruction Matching . 20

vi

3.1.2 Instruction Replacement . 23

3.2 Interface and System Architecture . 27

3.2.1 Representing Patterns . 27

3.2.2 Representing Replacement Sequences 30

3.2.3 Adding/Removing Specifications 33

3.2.4 Constructing Specifications . 35

3.2.5 ISA Extensions . 40

3.2.6 Operating System Support . 40

3.3 Summary . 41

4 DISE Microarchitecture 43

4.1 Microarchitectural Implementation . 43

4.1.1 DISE Engine . 44

4.1.2 Pipeline Organization . 48

4.1.3 DISE Control Flow . 52

4.1.4 Other Microarchitectural Changes 53

4.2 Evaluation of the Microarchitecture . 54

4.2.1 Methodology . 54

4.2.2 Transformation Overhead . 56

4.2.3 Sensitivity Analysis . 58

4.3 Summary . 61

5 Debugging with DISE 62

5.1 Interactive Debugging Background . 65

5.2 Debugging with DISE . 67

5.2.1 Breakpoints . 68

5.2.2 Watchpoints . 68

5.2.3 Conditionals . 74

5.2.4 Discussion . 74

5.3 Evaluation of DISE Debugging . 75

5.3.1 Unconditional Watchpoints . 77

5.3.2 Conditional Watchpoints . 81

vii

5.3.3 Number of Watchpoints . 82

5.3.4 Implementation Effects . 83

5.4 Related Work in Debugging . 86

5.5 Summary . 89

6 Code Compression with DISE 90

6.1 Dynamic Code Decompression Background 91

6.2 DISE-Based Code Compression . 93

6.2.1 Dynamic Decompression . 93

6.2.2 Compression Algorithm . 101

6.3 Evaluation of DISE Decompression . 105

6.3.1 Methodology . 106

6.3.2 Compression Effectiveness . 109

6.3.3 Sensitivity Analysis . 111

6.3.4 Dictionary Programmability . 113

6.3.5 Performance Impact . 117

6.3.6 Energy Implications . 120

6.4 Related Work in Code Compression . 123

6.5 Summary . 126

7 Security with DISE 128

7.1 DISE-Based Attack Detection . 129

7.1.1 Return Address Protection . 130

7.1.2 Pointer Protection . 133

7.2 Evaluation of DISE-Based Attack Detection 136

7.2.1 Methodology . 136

7.2.2 Protection Effectiveness . 138

7.2.3 Performance Overhead . 138

7.2.4 Customizing Attack Detection 140

7.3 Related Work in Software Security . 142

7.4 Summary . 143

viii

8 Conclusions 145

8.1 DISE Summary . 145

8.2 Future Directions . 146

ix

List of Tables

2.1 Summary of related work . 16

3.1 Matching attributes . 21

3.2 Parameter types . 24

3.3 ISA instruction extensions . 39

3.4 Architected DISE state . 41

4.1 Default machine characteristics . 54

4.2 Benchmark summary . 55

4.3 Number of PT/RT entries . 59

5.1 Benchmark summary. 76

5.2 Watchpoint write frequency . 76

6.1 Interpretations of 5-bit immediate parameters 98

6.2 Default embedded machine characteristics 107

6.3 Benchmark summary . 108

7.1 Benchmark summary . 137

x

List of Figures

1.1 Customizing for debugging . 3

1.2 Simplified diagram of a DISE processor 5

1.3 Three DISE transformations . 6

2.1 Taxonomy of translation mechanisms 11

3.1 Alpha ISA . 19

3.2 DISE transformation for store address tracing 22

3.3 Aware transformation specifications for decompression 23

3.4 DISE transformation with a conditional call 27

3.5 Binary representation of a pattern specification 28

3.6 DISE specifications table . 30

3.7 Logical representation of a replacement sequence 31

3.8 Binary representation of a replacement sequence specification 33

3.9 Encoding and layout of the directives . 34

3.10 Compiling DISE specifications and auxiliary routines 36

3.11 Initialization code for store adress tracing 38

4.1 Simplified diagram of a DISE processor 44

4.2 Abstract diagram of the DISE engine . 45

4.3 DISE controller . 46

4.4 Two DISE engine implementations . 49

4.5 Decoder-based DISE engine implementation 50

4.6 DISE engine implementation in an x86 processor 51

4.7 Overhead of DISE and binary rewriting 56

xi

4.8 Performance impact of instruction cache size and processor width 57

4.9 Performance impact of the DISE pipeline configuration 58

4.10 Performance impact of the RT configuration 60

4.11 Performance impact of a conditional call 61

5.1 Example implementations of a DISE watchpoint 69

5.2 Handler routine for evaluating watchpoint expression 71

5.3 Comparison of four unconditional watchpoint implementations 77

5.4 Comparison to binary rewriting . 79

5.5 Comparison of four conditional watchpoint implementations 80

5.6 Performance impact of the number of watchpoints 82

5.7 Overhead of various DISE watchpoint implementations 84

5.8 Overhead of multithreaded DISE watchpoints 86

5.9 Performance impact of protecting debugger and DISE state 87

6.1 Two implementations of dynamic code decompression 92

6.2 DISE specification for decompression 94

6.3 Compression examples . 96

6.4 DISE codeword encoding formats . 97

6.5 Encoding and layout of the directives . 99

6.6 Dictionary construction algorithm . 103

6.7 Dedicated and DISE-based feature impact on compression 109

6.8 Impact of dictionary size on compression 112

6.9 Impact of parameters on compression 113

6.10 Impact of dictionary customization on compression 114

6.11 Impact of hybrid custom/fixed dictionary on compression 116

6.12 Performance impact of instruction cache and dictionary 118

6.13 Performance impact of RT misses . 120

6.14 Impact of compression on energy . 121

6.15 Impact of profile-based code compression on energy 123

7.1 DISE transformation specifications for return address protection 131

7.2 The address check routine . 132

xii

7.3 DISE transformation specifications for pointer encoding/decoding 134

7.4 Overhead of DISE and binary rewriting attack detection 139

7.5 Performance impact of pointer encoding 140

7.6 Performance impact of hardware-supported pointer encryption 141

xiii

Chapter 1

Introduction

Computing has changed significantly over the last few decades. Previously, the central

concern was performance, but recently, concerns have shifted to other metrics such as

security, reliability, and program size, to name only a few. Some contributing factors

for this shift include the growth of the Internet, the ever increasing complexity of both

hardware and software systems, and the emergence of embedded systems. For example,

because some programs are now internet accessible, they are more prone to attack. In

these programs, security is the primary concern.

Unfortunately, not all users care equally about each metric for any particular program.

There are many programs for which some users are primarily concerned with one metric

(e.g., performance), while other users are primarily concerned with another metric (e.g.,

security). As a result, programs are oftencustomizedfor each individual user and program.

1.1 Customizing Programs

Users customize programs in many ways.

Debugging. First, when developing a program, a developer customizes the program for

debugging. For instance, the developer might augment the program with code to detect

whenever a particular memory value is altered,i.e., a watchpointin an interactive de-

bugger. Watchpoints are important for finding memory corruption bugs that crop up in

1

languages like C and C++ in which memory allocation is managed explicitly by the pro-

grammer.

Profiling. Once the program is ready for distribution, the developer might customize it

for profiling. For example, the developer might choose to trace memory writes. This

information can be used to optimize the program for the context in which it is run (e.g.,

rescheduling instructions).

Code size.Alternatively, a developer porting the program to an embedded machine, where

memory and cache size are limited, customizes for code size. In this case, customization

is split into two phases: first, the program is compressed and ported, and second, the

program is decompressed at runtime (preferably, in small chunks).

Security. A consumer (i.e., user) might customize the program for security. For example,

suppose the program is internet accessible. Malicious users can potentially supply unex-

pected inputs to subvert the program. In this case, the user might want to insert code into

the program to detect such attacks.

Finally, other consumers may not be willing to tradeoff security for the additional

overhead of the detection code. These users may not customize the program at all.

1.2 Customization Mechanisms

There are two existing approaches to building customization mechanisms: building it in

software or in hardware.

Software approaches.To customize an application in software, the customization mech-

anism performsprogram transformation. Each of the customizations described above can

be implemented using a program transformation. For example, Figure 1.1 shows the de-

bugging customization that implements a watchpoint in an interactive debugger. Although

not a requirement, the transformation is performed at the assembly-level1. The transfor-

mation replaces all stores (e.g., stq andstl) with a code sequence that performs the original

store, and then reads the value of the watched location to check if it was modified. If it

was, then a handler routine is called. In the code sequence, three registers are reserved for

1In this dissertation, we use Alpha assembly code [81].

2

stq $1,8($2)
stq $1,8($2)
ldq $22,0($23)
cmpeq $22,$24,$22
bne $22,handler

perform original store
load watched value
compare with old value
diff? then goto handler

$22=scratch, $23=watched address,
$24=old watched value

Debugging: Interactive Debugging Watchpoint

Figure 1.1: Customizing for debugging: a transformation that implements an interactive
debugging watchpoint. Assume registers$22-23 are available and for use by the trans-
formed code.

the transformed code:$22 for scratch,$23 to hold the watched address, and$24 to hold

the previous value of the watchpoint.

These software customizers are calledtranslation mechanisms. There are a number

of different types of translation mechanisms. One natural translation mechanism is the

compiler. However, compilation is usually done by the developer and it is impractical to

expect developers to anticipate all of their users’ needs. Even if they could, they would

have to compile and manage many variants of each application. A more practical approach

is to use a client-side facility that transforms the executable.

One proposed client-side facility is aprogrammable software translator, which trans-

forms the static program image [14, 33, 46, 57, 64, 69, 73, 78, 82]. For example, a soft-

ware translator can perform the transformation in Figure 1.1 that implements a debugging

watchpoint. Of course, because the translator is programmable, it can be used for many

other transformations such as to enhance security or profile the application.

Hardware approaches. Alternatively, other researchers have proposed usingdedicated

hardware widgetsto customize programs within the processor [19, 59, 99]. Hardware wid-

gets do not transform a program, but instead are used to augment or monitor the running

program. For example, most processors provide debugging registers for implementing

watchpoints. An interactive debugger sets one of the debugger registers with the address

of the watchpoint. Whenever that memory value is written to, the processor traps to the

operating system, which then transfers control to the interactive debugger.

3

Software versus hardware.These two approaches have complementary advantages and

disadvantages. First, software customizers are programmable and thus, flexible. With

software translation mechanism, users can easily specify new customizations or modify-

ing existing ones. Software translators are also general-purpose. They export a rich and

expressive API with which users can specify almost any transformation (i.e., customiza-

tion). But at the same time, software translators are inefficient. The additional code is

spliced directly into the program image, degrading instruction cache performance. Fur-

thermore, the transformation cost is often high, and if performed at runtime, is perceived

as additional overhead.

On the contrary, hardware widgets are highly efficient. The cost of monitoring the

program is minimal and the program footprint is unchanged, so there is no impact on

instruction cache performance. However, hardware widgets are dedicated to a particular

customization (e.g., interactive debugging watchpoint). So, for example, to profile an

application requires a new hardware widget. In addition, hardware widgets are not flexible.

Modifying the functionality of a hardware widget means modifying hardware. Finally,

hardware widgets are limited in their uses since they do not transform programs.

This work seeks the best of both worlds: a customization mechanism that is both

flexible and general-purpose as well as highly efficient. To achieve these goals, we propose

a hybrid approach, which we callDynamic Instruction Stream Editing (DISE)[22].

1.3 DISE

DISE is effectively a programmable hardware translator for transforming programs. Be-

cause DISE is programmable, transformations (i.e., customizations) are easily added, re-

moved, or modified. In addition, this dissertation will demonstrate the formulation of

many different types of transformations in DISE, including transformations for debug-

ging [25], decompression [23, 26], and security [24, 21]. Because DISE is a hardware

mechanism, transformation is also efficient. As described later, the transformation cost is

negligible (although there is the overhead of executing the transformed code). In addition,

the program image is unaltered and consequently instruction cache performance does not

suffer.

4

FETCH DISE EXECUTE

User-defined
transformation
specification

DECODE

Figure 1.2: A simplified diagram of a DISE processor.

DISE transforms programs using instruction macro-expansion. DISE takes as input

individual instructions and outputs instruction sequences based on the inputted instruction.

As shown in Figure 1.2, DISE inspects every fetched instruction, macro-expanding on

some of the instructions, and the translated instruction stream is passed to the decoder.

DISE essentially allows users to change the semantics of existing instructions or to

define new instructions. These two capabilities allow DISE to express many transforma-

tions.

1.4 Example DISE Transformations

Figure 1.1 and Figure 1.3 show four different transformations, all of which can be per-

formed by DISE. First, DISE can implement an interactive debugging watchpoint (i.e.,

customizing for debugging). DISE changes the semantics of store instructions, macro-

expanding each store into a code sequence that performs the original store and then checks

if the watched location was modified (as shown Figure 1.1).

DISE can also trace store addresses (i.e., customizing for profiling). Again, DISE

changes the semantics of store instructions, macro-expanding stores into a sequence that

logs the PC and the memory address before performing the original store (as shown in

Figure 1.3(a)).

DISE can also perform dynamic code decompression (i.e., customizing for code size).

First, a static binary rewriter replaces frequently-occurring instruction sequences with

compressed codewords (instructions that use a reserved opcode). DISE defines these new

5

Code Size: Code Decompression

lda $22,4($2)
stq $22,0($23)
addq $23,8,$23
stq $1,4($2)

compute addr
log addr
incr. log ptr
perform store

$22=scratch, $23=log pointer

Profiling: Store Address Tracing

(a) (b)

codeword

original
sequence:
addq $1,8,$1
ldq $2,0($1)
addq $2,4,$3

stq $1,4($2)

addq PC,4,$22
stq $22,0($23)
addq $23,8,$23
bsr 0x1f,$31

get return addr
push onto...
...shadow stack
perform call

Security: Return Address Protection

subq $23,8,$23
ldq $22,0($23)
cmpeq $22,$31,$22
beq $22,error
ret $31

pop addr off of...
...shadow stack
cmp to ret. addr
diff? then error
perform return

$22=scratch, $23=shadow stack pointer

ret $31

bsr 0x1f,$31

(c)

Figure 1.3: Three DISE transformations: (a) store address tracing (customizing for profil-
ing), (b) dynamic code decompression (customizing for code size), and (c) return address
protection (customizing for security). These transformations assume registers$22-23 are
available and for use by the transformed code.

instructions; it macro-expands them into the decompressed sequences (as shown in Fig-

ure 1.3(b)).

Finally, DISE can protect memory-resident return addresses (i.e., customizing for se-

curity). This protection is accomplished by changing the semantics of call and return

instructions. DISE macro-expands call instructions into a code sequence that saves the

return address to a shadow stack before performing the original call (as shown in Fig-

ure 1.3(c)). DISE macro-expands return instructions into a code sequence that verifies

the actual return address matches the corresponding address on the shadow stack before

6

performing the original return (as shown in Figure 1.3(c)).

Although DISE has many uses, it cannot perform arbitrary transformations. DISE al-

lows users to either change the semantics of existing instructions or to define new ones.

DISE is limited to transformations that can be formulated using one of these approaches.

Furthermore, it is limited to peephole transformations, transformations of one instruction

at a time. DISE cannot perform transformations that require multi-instruction windows

such as basic blocks or traces. However, we have not found any uses of multi-instruction

matching that would warrant the added complexity and performance overhead of the im-

plementation.

1.5 Contributions

This dissertation makes the following contributions:

• Designs a programmable, hardware-based translation mechanism that can im-

plement a range of transformations.We show the utility of DISE in three contexts.

– Debugging. DISE can implement both breakpoints and watchpoints in an in-

teractive debugger.

– Code compression. DISE can serve as a dynamic code decompressor.

– Security. DISE can inject code into an application to detect stack and pointer

smashing attacks.

• Presents a preliminary system-level design and proposed hardware organiza-

tion for DISE.

• Evaluates the performance characteristics of DISE.Our evaluation shows the

following:

– Overhead of DISE. We show that the overhead of transformation in DISE is

low. We demonstrate this result in the context of profiling, security, code de-

compression, and debugging.

7

– Performance of DISE versus software translation. In particular, it shows that

DISE outperforms software translation and that trends in application work-

loads (i.e., larger memory footprints) will widen this gap.

– Sensitivity to design parameters. In particular, we evaluate the performance of

DISE as we vary microarchitectural characteristics as well as the transforma-

tion.

1.6 Differences from Previous DISE Publications

Some of the work presented in this dissertation was published previously [22, 23, 24, 25,

26]. This dissertation extends these earlier documents by explicitly defining the DISE pro-

gramming interface, describing the compilation process of specifications, and introducing

additional DISE transformations (e.g., pointer smashing protection).

This dissertation also makes some simplifications of the DISE mechanism. First, the

PT and RT are treated as caches of memory-resident patterns and specifications. Second,

the microarchitecture described in this dissertation is targeted for a RISC (Alpha-like) ma-

chine (although a CISC implementation may also be possible). Finally, in this dissertation

DISE is a user-level tool only. This restriction simplifies the operating system support as

well as the implementation of the DISE hardware structures.

1.7 Overview

The rest of this dissertation is organized as follows. Chapter 2 presents related work. In

particular, it shows how DISE fits into the context of existing translation mechanisms. It

also discusses other hardware-based customization mechanisms. Finally, it also discusses

other mechanisms with similar implementations as DISE, although they have much differ-

ent functionality.

DISE mechanism.Chapters 3 and 4 present the DISE mechanism. Chapter 3 presents the

architecture; it discusses the functionality, interface, and system architecture of DISE. In

particular, how to specify transformations in DISE and how to program DISE with these

specifications.

8

Chapter 4 looks at the DISE microarchitecture; it describes and evaluates one particu-

lar optimized implementation. This implementation has little performance impact on non-

transformed programs. In addition, the latency of instruction macro-expansion (excluding

the cost of executing the transformed instructions) is negligible. Finally, the evaluation

shows the performance characteristics of a DISE processor as we vary several design pa-

rameters.

Utility of DISE. Chapters 5-7 show the utility of DISE in three different contexts. Chap-

ter 5 discusses using DISE to implement interactive debugging watchpoints (using a trans-

formation like that in Figure 1.1). In particular, DISE watchpoints are highly-efficient and

flexible. DISE-based watchpoints eliminate costly unnecessary transitions to the debug-

ger (i.e., context switches), which in commercial debuggers can result in 40,000 times

slowdowns, whereas DISE usually adds less than 25% overhead on most benchmarks. In

addition, this chapter shows that DISE can watch arbitrarily complex expressions.

Chapter 6 explores the DISE mechanism as a dynamic code decompressor (using trans-

formations like that in Figure 1.3(b)). It shows the use of DISE as an efficient dynamic

code decompressor. It demonstrates code size reductions of over 35% using DISE. It also

demonstrates the benefits of parameterized decompression and customized decompression

dictionaries, which in both cases can improve compression by as much as 20%. Finally,

it shows that DISE decompression can reduce total energy consumption by 10% and the

energy-delay product by as much as 20%.

Chapter 7 shows the utility of DISE in enhancing security and, in particular, its use

in detecting two common types of attack: stack and pointer smashing. It shows that

DISE-based attack detection is efficient with overheads usually less than 25%. DISE also

separates the program from the attack detection code, which is simply a transformation

specification. This separation makes it possible to customize attack detection as well as

potentially adapt to new attacks (assuming DISE can be used to detect these new attacks).

The fact that DISE can effectively implement all of these transformations, demon-

strates its utility as a general-purpose tool.

Finally, Chapter 8 gives some conclusions and discusses future directions of this work.

9

Chapter 2

Related Work

This chapter discusses related work. Section 2.1 discusses translation mechanisms and

Section 2.2 discusses ad-hoc hardware widgets both of which can be used for customiza-

tion. Section 2.3 discusses existing hardware-based macro-expansion mechanisms, the

mechanism that DISE uses to transform programs, which have a similar implementation

but a much different usage model. Finally, Section 2.4 summarizes these techniques, com-

paring and contrasting them with DISE.

Note that in Chapters 5-7, where we explore three uses of DISE, we discuss related

work to other customization techniques. In Chapter 5 (page 86) we discuss related work

in debugging, in Chapter 6 (page 123) we discuss related work in code compression, and

in Chapter 7 (page 142) we discuss related work in enhancing software security.

2.1 Translation Mechanisms

There are a number of existing translation mechanisms for program transformation. The

mechanisms are characterized by when and where they perform transformation: during

compilation or post-compilation, statically or at runtime, in software or in hardware. Fig-

ure 2.1 shows a taxonomy of translation mechanisms. As described below, there are ad-

vantages and disadvantages to each approach.

10

Compiler
Static
Binary

Rewriter

Software
Dynamic
Translator

Hardware
Translator

So
ftw

ar
e-

sid
e

H
ar

dw
ar

e-
sid

e

St
at

ic
-s

id
e

D
yn

am
ic

-s
id

e

D
ev

el
op

er
-s

id
e

Cl
ie

nt
-s

id
e

Figure 2.1: Taxonomy of translation mechanisms.

2.1.1 Compiler

The natural place to transform a program is within the compiler. Some existing compiler

transformations include array bounds checking in C [48, 75], return address or pointer

protection in C [18, 27, 28], and debugging watchpoints [89, 90]. The advantage to trans-

forming within the compiler is that the compiler has access to the source code. However,

the major disadvantage is that compilation is often done by the developer not by users and

developers cannot anticipate the transformation needs of each user. Furthermore, compi-

lation time is lengthy for some types of applications (e.g., databases). Requiring users to

recompile the program every time they want to customize it is not appropriate for many

customizations (e.g., adding/removing a debugging watchpoint). In addition, most com-

pilers do not provide an API for customizing an application in any general way. Therefore,

the compiler must be modified.

2.1.2 Static Binary Rewriter

Static binary rewriters are a client-side mechanism that take as input an executable pro-

gram and output a transformed executable. They provide hooks for specifying application

transformations. Transforming via a binary rewriter has several similarities with trans-

forming via a compiler. First, both a binary rewriter and a compiler transform programs

offline: no transformation is done during the runtime of the transformed program. Be-

cause transformation is offline, more elaborate time-consuming transformations are pos-

sible. But at the same time, binary rewriters (and compilers) cannot take advantage of

runtime information. In addition, they do not transform shared library code nor can they

transform JITs (Just-In-Time compiled programs).

11

The advantage of transforming via a binary rewriter rather than a compiler is that a

binary rewriter is programmed by the end user not by the developer. The developer does

not have to anticipate each user’s transformation needs. Instead, each user can customize

their application. Of course, this also means that the binary rewriter does not have access

to source code. But many transformations can be performed on the machine code (e.g.,

profiling, debugging).

Example binary rewriters include Atom [82], Etch [73], and EEL [57]. Demonstrated

transformations using a binary rewriter include profiling [10], dynamic race detection [76],

shared memory communication [77], debugging breakpoints/watchpoints [51], return ad-

dress protection [11], and memory fault isolation [91].

2.1.3 Software Dynamic Translator

A third mechanism for customization is software dynamic translation. There are two types

of software dynamic translators:in-placetranslators andcode-cachetranslators.

In-place translators. In-place techniques, as the name suggests, maintain the original

layout of the program, and patch it locally. They are dynamic in that they can transform

the application as it runs. Because it is costly to insert a code sequence in the middle

of a program at runtime, in-place techniques generally usetrampolining. The translator

replaces one or more instructions with a jump to the appropriate code sequence. When the

code sequence finishes executing, it jumps to the next instruction in the original program.

In-place techniques usually transform the codeeagerlyrather thanlazily, meaning they

translate all of the code at once rather than when the code is first executed. Code that

is never executed is still translated. DynInst [46] is an example of an in-place dynamic

translator.

Code-cache translators. In contrast, code-cache dynamic translators fully reconstruct

the program layout. They translate the dynamically-executed parts of the program into

a code cache, and execute them from there as opposed to the original binary image. As

a result, users can formulate more complex transformations in a code cache translator,

such as ISA conversions. In addition, code-cache techniques operate lazily. When an un-

translated block of code is encountered, the application relinquishes control to the runtime

12

system, which builds the appropriate block of code, loads it into the code cache, and re-

turns control back to the application at the beginning of the newly translated block. Most

code-cache techniques translate code at the granularity of dynamic traces. At a trace exit

point, control is transferred back to the runtime system, which determines the next trace

that needs to be executed, building it if necessary. To avoid this cost, most software dy-

namic translators link traces within the code cache,i.e., transform trace exits from jumps

to the runtime system into jumps to entries in the code cache. With good code reuse, the

cost of translation is amortized over the total execution of the program. Under the right

circumstances, performance can actually improve over that of the untransformed program;

the cost of translation is outweighed by the high performance of the translated code.

Example code-cache dynamic translators include DELI [33], DynamoRIO [14],

Strata [78], Valgrind [69] (Valgrind compiles basic blocks rather than traces and does

not do any linking), and Pin [64]. Some transformation-specific code-cache translators

include FX!32 [88], DAISY [35], and Transmeta’s Crusoe [44]. These three translators

convert one ISA to another in software. Dynamo [9] uses translation to dynamically opti-

mize programs.

Like other software translators (compilers and binary rewriters), software dynamic

translators (both in-place translators and code-cache translators) can perform arbitrary

transformations. However, because transformation is performed at runtime, software dy-

namic translators are often limited to low-overhead transformations that do not require

whole-program analyses. In general, the overhead is higher for a software dynamic trans-

lator because they transform at runtime (although in some cases, the software dynamic

translator can optimize the program and amortize the cost of transformation). An impor-

tant virtue of software dynamic translators is that they can exploit runtime information.

The transformations are also late-binding, meaning the user can decide how to transform

the program at runtime, rather than at some earlier point.

2.1.4 Hardware Translator

A final approach for transforming programs is via hardware. Hardware translators have a

lower performance cost than software translators; they do not bloat the code nor is there a

13

high fixed transformation cost (the cost of transformation excluding the cost of executing

additional instructions). But they sacrifice functionality for performance. Many hardware

expanders are application specific, and none are user programmable.

One example application-specific hardware translator is decoder-based, dynamic code

decompression [59], which transforms a compressed program into a decompressed pro-

gram. Tagged instructions in a compressed application are interpreted as dictionary indices

and replaced by the corresponding entries.

Programmable microcode [17, 72] was an early choice for transformations like ad-

dress tracing [2]. Although microcode remains a viable option for implementing complex

instructions and programmable microcode stores persist (e.g., Intel supports limited mi-

crocode patching to fix bugs in the field [43]), its current use is too sparse and irregular

to effectively support transformation. Alpha’s PAL [81] exposes hardware internals to

privileged software, but is invoked using calls and traps, not matching and replacement,

making it unsuitable for many transformations. Neither microcode nor Alpha PAL is user

programmable.

2.2 Ad-Hoc Hardware Widget

In addition to translation mechanisms, there are also ad-hoc hardware widgets that can

perform customization. These mechanisms do not transform programs but rather mon-

itor or augment the running program within the processor. These are highly efficient,

but not programmable and not general-purpose. The profiling processor [99] and instruc-

tion path co-processor [19] provide additional functionality—profiling and trace construc-

tion, respectively—at virtually no cost to the application using dedicated, potentially pro-

grammable, pipeline stages. To minimize performance impact, the dedicated stages are

placed post retirement and thus can only monitor programs (e.g., cannot do decompres-

sion).

Hardware debugging registers provided by some architectures (e.g., x86, IA-64, Pow-

erPC) are also a form of hardware customization. These registers allow interactive debug-

gers to implement watchpoints (as well as breakpoints, although more flexible techniques

are generally used for breakpoints). The debugger loads these registers with the memory

14

address of each watched variable. If any of these addresses are stored to, then the processor

traps and control is transferred to the debugger. However, these registers are not a flexible

approach to implementing watchpoints. First, they are limited in number (e.g., 4). They

also have no support for conditional watchpoints (i.e., watchpoints that only fire based on

a user-specified predicate). In Chapter 5, we show that this inflexibility forces interactive

debuggers in many circumstances to resort to more inefficient techniques, which can lead

to slowdowns greater than 40,000 times. These registers are also debugging specific.

Finally, many security enhancing hardware customizers has been proposed [29, 55,

49, 65, 83, 87, 95, 97]. These prevent various forms of software attacks such as stack and

pointer smashing attacks. Like the mechanisms discussed above, these techniques are all

application specific.

2.3 Decoder-Based Macro Expansion

An additional related body of work is in hardware translation mechanisms. IA32 proces-

sors [39, 41, 42] dynamically macro-expand each CISC instruction into one or more inter-

nal RISC operations, potentially caching the translations [39]. Dynamic Instruction For-

matting [66] schedules cached instructions into VLIW groups. Speculative Decode [52]

implements microarchitectural execution time optimizations like silent-store elimination

using alternate expansions. These facilities resemble DISE mechanically, but differ in two

major ways. First, they translate the ISA to a simpler form for the purpose of reducing ex-

ecution complexity. DISE adds instructions in order to add functionality. Second, they are

inaccessible to software, and thus capable only of changing/optimizing representations.

To add functionality, DISE has an API.

2.4 Summary

We have discussed a number of related mechanisms to DISE. Here we compare and con-

trast these mechanisms. As shown in Table 2.1, we focus on six functionality attributes

including whether the mechanism can (i) monitor a program, (ii) transform a program, (iii)

transform a program using peephole transformation, (iv) transform a program using global

15

Software Ad hoc Decoder
Binary dynamic Hardware hardware -based

Compiler rewriter translator translator widget expander DISE
F

un
ct

io
na

lit
y

at
tr

ib
ut

es
Program

Yes Yes Yes Yes Yes No Yes
monitoring
Program

Yes Yes Yes Yes No No Yes
transformation

Peephole
Yes Yes Yes Yes No No Yes

transformation
Global

Yes Yes Yes No No No No
transformation

Flexible/
Yes Yes Yes Yes No No Yes

programmable
Programmable

No Yes Yes No No No Yes
by a user

P
er

fo
rm

an
ce

at
tr

ib
ut

es

Fixed
High* High* High Low None Low Lowtransformation

cost
Static

High High High None None None None
instruction
footprint
overhead
Dynamic

High High High High None High High
instruction
footprint
overhead

Table 2.1: Summary of related work. * Note that although compilers and binary rewriters
have a fixed transformation cost, it is performed statically (i.e., offline).

transformation, (v) whether the mechanism is flexible and programmable, and finally, (vi),

whether the mechanism is programmable by users (rather than just designers of the mech-

anism and/or privileged software). We also look at three performance attributes. These

attributes make up the total cost of transforming a program. They include (i) the fixed

cost of transformation, (ii) the static instruction footprint overhead, and (iii) the dynamic

instruction footprint overhead.

Software techniques. Software techniques (compilers, binary rewriters, software dy-

namic translators) can perform any kind of transformation including both peephole and

global transformations. Software techniques can also be used for performance monitoring

(via transformation). Software techniques are highly flexible. In terms of programmabil-

ity, binary rewriters and software dynamic translators are programmable by end users (as

well as by designers), while compilers are only programmable by the compiler designer.

16

A user would have to modify a compiler to perform some arbitrary transformation, which

is beyond the capabilities of most users. Furthermore, the source code for many compilers

is not available to end users.

On the performance side, software techniques have high transformation overheads.

First, there is a high transformation cost (note that compilers and binary rewriters trans-

form statically). Second, software techniques have a high static instruction footprint over-

head,i.e., they bloat the code. Finally, software techniques also have a high dynamic

instruction footprint overhead,i.e., any inserted instructions must be executed and thus,

reduce instruction bandwidth.

Hardware techniques. In contrast to software techniques, hardware techniques have

good performance, but less functionality. The only cost of hardware expanders (e.g.,

microcode, Alpha PAL) is reduced instruction bandwidth, however, they are not pro-

grammable by users, but rather by processor vendors (microcode) and privileged software

(Alpha PAL). Ad-hoc hardware widgets have no transformation costs, however, these are

not programmable at all. Furthermore, they can not transform a program, but only monitor

it. Existing decoder-based macro-expanders, which have other uses such as CISC-to-RISC

translation, are not appropriate for program customization.

DISE. DISE is a hybrid software and hardware mechanism that combines most of the

functionality benefits of software techniques with most of the performance benefits of

hardware techniques. DISE is programmable by users and can transform programs using

peephole transformation. Because it does not change the program image, it is also a nice

program monitor. Like existing hardware expanders, DISE has only one transformation

cost: dynamic instruction footprint overhead. Moreover, as we show in later chapters,

this overhead is small for most transformations and benchmarks and much less than the

overhead of software techniques, which also have a static instruction footprint cost.

17

Chapter 3

DISE Architecture

This chapter presents the DISE architecture [22]. Section 3.1 describes the functionality

of DISE, and Section 3.2 describes the interface and system architecture.

Although DISE is mainly ISA independent, we describe the implementation of DISE

on the Alpha ISA [81]. All assembly code in this dissertation uses the Alpha ISA. Fig-

ure 3.1 summarizes aspects of the Alpha ISA that are particularly relevant to this disserta-

tion. Figure 3.1(a) shows the five encoding formats of Alpha instructions. The instructions

are divided up intofields, e.g., opcode, immediate, and register identifiers (i.e., RA, RB,

RC). Figure 3.1(b) describes how each register field (i.e., RA, RB, andRC) is used within

various instructions. Figure 3.1(c) lists some commonly-used instructions in the Alpha

ISA. Although not shown in Figure 3.1, register names in Alpha are prefixed with ’$’

(e.g., $2), while immediates have no prefix (e.g., -64).

3.1 Functionality

This section gives a user’s perspective of the DISE mechanism. The DISEenginefor

transforming programs operates by performing instruction macro-expansion. It takes as

input an individual instruction and outputs an instruction sequence based on the inputted

instruction. DISE inspects every dynamic instruction (prior to execution) and macro-

expands some of the instructions based on user-specified rules.

18

Alpha Instruction Encodings

Opcode RA RB RCFunction

Opcode RA RB Immediate

Opcode RA Immediate

Opcode Number

04515162021252631

System Call Format

Branch Format

Opcode RA RCFunctionImmediateInteger w/ Imm. Format

Integer/FP Format

Memory/Jump Format

(a)

Alpha Register Field Uses

RA
Source in Integer/FP (w/ or w/o immediate),

source or destination in stores and loads,
return address in indirect jumps (calls/returns),

branch test

Integer/FP source (w/o immediate),
base address in stores and loads

RB

Target in Integer/FP (w/ or w/o immediate)RC

(b)

Commonly-Used Alpha Instructions

ldq/
stq

beq/
bne

jsr/
bsr

ret

addq/
subq
and/
bis

lda

Call a subroutine

Return from a subroutine

Branch if test register is
(is not) 0

Add (subtract) two quad
operands, put result in target
And (or) two quad operands,

put result in target

Load (store) quadword from
(to) memory

srl Shift first operand by second
operand, put result in target

Load target with base
address plus immediate

Opcode Description

cmpeq Compare 2 registers, if same
put 1 in target, otherwise put 0

(c)

Figure 3.1: Alpha ISA: (a) instruction encodings, (b) register field uses, and (c)
commonly-used instructions.

19

Instruction macro-expansion consists of two logically-separate components: instruc-

tion matching and instruction replacement. The matching component is responsible for

identifying instructions that need to be transformed (i.e., macro-expanded). A matched

instruction is called atrigger because it triggers transformation. The replacement com-

ponent is responsible for replacing trigger instructions with a user-specified instruction

sequence. Likewise, a DISE user-specified rule, called atransformation specification,

consists of two parts: apatternfor matching instructions and areplacement sequencethat

DISE uses to replace the matched instruction. We discuss both instruction matching and

instruction replacement below.

3.1.1 Instruction Matching

To match instructions, users specify a pattern, which is defined on the bits of the instruc-

tion. It is any combination of opcode, opcode class (e.g., all memory instructions), register

names, immediate, or immediate sign. For example, users can specify patterns such as

“loads that use the stack pointer as their address register” or “conditional branches with

negative offsets.”

A pattern cannot refer to any dynamic property of an instruction such as the value in

one its register operands (this restriction simplifies the microarchitecture of DISE). Fur-

thermore, the pattern cannot refer to the instruction’s program counter (PC). Because we

have not found any compelling uses of PC matching, we leave it out of the current design

(including it would increase the size of the pattern representation presented in Section 3.2).

To specify a pattern (i.e., pattern specification), the user supplies a list of predicates

separated by ‘&&’. The pattern only matches an instruction if all the predicates are true

for that particular instruction. A predicate has the formT.X==Y whereT refers to the

instruction DISE is matching,X is an attribute ofT (e.g., opcode), andY is a legal value of

X (e.g., stq).

Table 3.1(a) lists the attributes that can appear in a predicate. Attributes are defined

on the assembly instruction not the machine instruction. For instance,T.OPCODE refers to

the assembly opcode of the instruction (e.g., bis) not the 6-bit machine instruction opcode

(e.g., 010001).

Figure 3.2 shows a DISE transformation for store address tracing, which we use as a

20

T.OPCODE

T.RA
T.RB
T.RC
T.IMM
T.IMMSIGN

Instruction's opcode

Instruction's RA register

Instruction's RB register

Instruction's RC register

Instruction's immediate

ldq, jsr

$5, $21
$5, $21
$5, $21
64, -48
+, -

Attribute Description Examples
Load
Store

Memory

Control flow
Branch

Call/return

ldq, stq, ldbu, stbu
ldq, ldbu
stq, stbu

beq, bne
jmp, jsr, ret
bsr, jsr, ret

Classes Example Opcodes

Call bsr, jsr
Return
ALU

ret
addq, subq, srl, and, bis

T.OPCLASS

Instruction's imm. sign

Indirect jump

beq, bne, jmp, bsr jsr, ret

Instruction Attributes for Matching

Example Opclasses on Alpha

(a) (b)

load, callInstruction's opcode class

All addq, srl, jsr, bne, stq

Table 3.1: Matching attributes: (a) the instruction attributes that DISE uses in matching,
and (b) some examples of the opclass attribute on the Alpha.

running example throughout this section. In store address tracing, the memory address of

each executed store in the application is logged. Figure 3.2(a) shows a transformation on

one particular store. The store is transformed into a code sequence that logs the address

and PC before performing the original store. The sequence also increments the log pointer,

checks if the log is full, and if so, calls a routine (e.g., writedisk) to write the log to disk.

Figure 3.2(b) shows the DISE transformation specification for store address tracing.

The format of a transformation specification is as follows:pattern = > replacement se-

quence (ignore the replacement sequence for the moment). The pattern in Figure 3.2(b),

T.OPCLASS==store , matches on all classes of store instructions, which in Alpha includes

stq , stl , stw , stb , etc. There are many opcode classes, including all control flow instruc-

tions and all memory instructions. They are architecture dependent and defined by the

processor vendor.

Table 3.1(b) lists the opcode classes used in this dissertation, as well as a few other

21

stq $1,16($2)

lda $d0,16($2)
stq $d0,0($d1)
stq T.PC,8($d1)
addq $d1,16,$d1
cmpeq $d1,$d2,$d0
d_beq $d0,1
d_callne writedisk,$d0
stq $1,16($2)

compute address
log address
log PC
increment log pointer
is log full?
yes, branch
no, call writedisk
perform original store

Pattern (match on all stores)
T.OPCLASS == store
=> # Replacement sequence
 lda $d0,T.IMM(T.RB)
 stq $d0,0($d1)
 stq T.PC,8($d1)
 addq $d1,16,$d1
 cmpeq $d1,$d2,$d0
 d_beq $d0,1
 d_callne $d3,$d0
 T.INST

(a)

(b)

Figure 3.2: DISE transformation for store address tracing: (a) transformation for one
particular store and (b) the transformation specification in DISE.

desirable classes. Although not shown in Table 3.1(b), many of the classes could be broken

down further based on data size. For example, there could be a class for loads and stores

of bytes. DISE processor vendors might also want to include subclasses of the ALU class

(e.g., arithmetic instructions, shift instructions) and classes of floating point instructions.

Two usage modes.DISE has two usage modes:transparentandaware. A transparent

transformation operates on unmodified executables using specifications that match “nat-

urally occurring” instructions. In this mode, DISE changes the semantics of existing in-

structions. Store address tracing is an example of a transparent transformation. An aware

transformation operates on modified applications into which specially-crafted DISE code-

words (instructions that do not occur naturally) have been planted. An aware application—

one with codewords planted in it—will only run on a DISE processor.

Dynamic code decompression (discussed in Chapter 6) is an example of an aware

22

match reserved op
and immediate of 0
Compressed
sequence

T.OP == res2 &&
T.IMM == 0
=> addq $4,8,$4
 ldq $5,0($4)
 cmpeq $6,$5,$3

T.OP == res2 &&
T.IMM == 1
=> and $7,8,$7
 cmpeq $5,$7,$6

match reserved op
and immediate of 1
Compressed
sequence

Figure 3.3: Aware transformation specifications for decompression.

transformation. In decompression, the program image contains codewords that were used

to compress frequently-occurring instruction sequences. DISE macro-expands these code-

words back into the original instruction sequence at runtime (i.e., decompressing them).

Figure 3.3 shows two specifications for DISE decompression. Both specifications match

instructions with a reserved opcoderes2 (i.e., codewords). They match on different im-

mediates, depending on instruction sequence the codeword replaced.

3.1.2 Instruction Replacement

To replace a matched instruction, a user defines a replacement sequence (in addition to

a pattern). A replacement sequence is simply a sequence of instructions (with a few

differences, discussed below). In store address tracing (Figure 3.2(b)), the replacement

sequence has 8 instructions. Replacement instructions have a few differences with con-

ventional instructions, which make it easier to program DISE.

Parameterized fields.First, replacement instructions areparameterizedwith respect to

the trigger,i.e., they can use fields from the trigger instruction (see Figure 3.1(a) for a

list of Alpha fields). A field in the replacement instruction can reference a field in the

trigger instruction usingT.<field name > (e.g., T.OPCODE). Table 3.2 lists all the fields in

the trigger which replacement instructions can reference, many of which are also used in

matching (e.g., T.RA).

In store address tracing (Figure 3.2(b)), the first, third, and last instructions in the

23

T.OPCODE
T.RA
T.RB
T.RC
T.IMM

Instruction's opcode

Instruction's RA register

Instruction's RB register

Instruction's RC register

Instruction's immediate

stq, jsr
$5, $21
$5, $21
$5, $21
64, -256

Field Description Examples

T.INST Entire instruction stq $1,0($2)
T.PC Instruction's PC 0x0011e4bf

Table 3.2: Parameter types. The instruction fields which replacement instructions can
reference.

replacement sequence are parameterized. The first instruction in the replacement sequence

computes the memory address of the matched store, using the sum of the base register

and immediate field. In the first instruction in Figure 3.2(b),T.RB refers to the trigger

instruction’s base register andT.IMM refers to the trigger instruction’s immediate. The

third instruction is also parameterized. It references the instruction’s program counter

(T.PC). Finally, the last instruction in the sequence is parameterized (i.e., T.INST); it uses

all fields from the trigger instruction. The last replacement instruction is simply the trigger

instruction.

Essentially, parameterization allows users to make more efficient use of a transfor-

mation. Without parameterization, users would have to specify transformations for each

instance of the matched instruction (e.g., stq $1,0($2) , stq $1,4($3) , etc.).

DISE registers.DISE also provides 16 dedicated registers ($d0-$d15) that are only usable

by replacement instructions (there is one exception described below). These registers

provide scratch space for replacement instructions; DISE users do not to have scavenge

registers from the application. The transformation specification for store address tracing,

shown in Figure 3.2(b), uses two DISE registers:$d0, $d1, and$d2.

DISE registers have an additional benefit beyond providing temporary space for sav-

ing scratch values (e.g., $d0). They allow users to synthesize global behavior. Because the

24

DISE engine uses instruction macro expansion, DISE is limited topeepholetransforma-

tions. It transforms programs one instruction at a time. However, DISE registers can be

used to synthesize global behavior by passing values from one transformation to another.

In Figure 3.2(b),$d1 is used in this manner. Each transformation updates the log pointer;

the new value of the log pointer is passed to a subsequent transformation through$d1.

Two instructions are available for moving values between the DISE registers and the

conventional registers. The instructiond mtdr moves a value from a conventional register

to a DISE register and the instructiond mfdr moves a value from a DISE register to a

conventional register (these are analogous tomtc0 andmfc0 in MIPS [37]).

DISE control flow. Replacement sequences can also contain control flow. This control

flow works as one would expect, allowing users to branch within a replacement sequence,

jump to other instructions in the application, and call routines (calls have slightly different

semantics than other DISE control flow and are discussed later).

Control flow within a replacement sequence is facilitated using an additional DISE

state element called theDISEPC. The address of an instruction (DISE or non-DISE) is

given by the pair〈PC:DISEPC〉. A (dynamic) replacement instruction has the same PC

as the trigger instruction, but its DISEPC is equal to the index within the replacement

sequence. Non-replacement-code has a DISEPC of 0.

There are two kinds of control transfers that can appear within a replacement sequence

(excluding DISE calls): intra-instruction and inter-instruction. As the name implies,

intra-instruction control flow transfers control to another instruction within the replace-

ment sequence (i.e., within the trigger instruction). Inter-instruction control flow transfers

control to another instruction outside of the replacement sequence (i.e., to another instruc-

tion in the application). The target instruction must be within the application and not

within another replacement sequence. DISE does not support jumps from one replace-

ment sequence to the middle of another replacement sequence. This restriction preserves

the abstraction that expansions are self-contained within individual instructions, making it

simpler to program and reason about DISE transformations.

Intra-instruction control flow allow users to branch within a replacement sequence.

These branches (i.e., d beq andd bne) work similarly to conventional branches, however,

the offset is with respect to the DISEPC rather than the PC. Naturally, offsets are not

25

allowed to go past the beginning or the end of the sequence. Figure 3.2(b), the replacement

sequence contains an intra-instruction branch (d beq).

Inter-instruction control are simply conventional Alpha control flow instructions.

These include both branches and jumps. They allows users to transfer control to another

instruction in the program image,i.e., to address PC+offset.

The DISEPC is also used in transfers of control due to exceptions. Precise state is

defined at each〈PC:DISEPC〉 boundary. If an instruction is interrupted, the operating

system saves both the PC and DISEPC, and uses both of these state elements to restart the

program at the appropriate point (which may be within a replacement sequence).

DISE calls. DISE replacement sequences can also contain function calls. A DISE function

call at〈PC:DISEPC〉 to 〈newPC:0〉 saves the return address〈PC:DISEPC+1〉. The called

function is composed of conventional instructions (i.e., non-DISE code), which are fetched

from instruction memory. To access values in DISE registers, the called function can use

the instructionsd mtdr and d mfdr . The function returns to〈PC:DISEPC+1〉, i.e., the

replacement instruction following the call. DISE itself is disabled (automatically via the

call) within the body of a function called from within a replacement sequence. This again

preserves the notion that replacement sequences are self-contained within the application

instructions and prevents bottomless recursion of DISE expansions.

A special DISE call instruction,d call , is used to call functions (which simplifies the

microarchitecture, as discussed in the next chapter). A conventional call (e.g., bsr or jsr)

will not disable DISE, and the corresponding return will not transfer control to the middle

of the replacement sequence. The function, itself, must also use a special DISE return,

d ret , to return back to the replacement instruction following the call and to re-enable

expansion. DISE returns are only legal within a DISE-called function.

A DISE call (as well as a conditional call) is an indirect jump (similar tojsr). The

address of the called function is placed in a DISE register (Section 3.2 describes how this

register is initialized), which is passed as an operand to the instruction. Because distinct

static instructions with different PCs can expand to the same replacement sequence, there

are no direct jump DISE calls (i.e., the offset would need to be different at each expansion).

Although DISE call instructions are indirect jumps, for clarity, we sometimes use the name

of the function in place of the register operand (e.g., d call foo as opposed tod call $d5).

26

T.OPCLASS == store
=> lda $d0,T.IMM(T.RB)
 stq $d0,0($d1)
 stq T.PC,8($d1)
 addq $d1,16,$d1
 cmpeq $d1,$d2,$d0
 d_ccallne writedisk,$d0
 T.INST

match on stores
compute address
log address
log PC
increment log ptr.
is log full?
yes, write to disk
perform store

Figure 3.4: DISE transformation with a conditional call.

In Figure 3.2(b), the replacement sequence contains a DISE call (d call) to writedisk ,

which writes the log to disk and empties the log in memory.

DISE conditional calls. As discussed further later, we introduce a conditional call in-

struction to reduce branch overheads. As shown in Figure 3.4, the instructiond ccallne

callswritedisk only if $d0 is not equal to zero. Similarly, there is also a conditional call,

d ccalleq , which calls a routine only if its second operand is equal to zero.

3.2 Interface and System Architecture

This section describes the interface and system architecture to DISE. Although users will

probably write transformations in the format described in the previous section (e.g., Fig-

ure 3.2(b)), DISE, which is a hardware mechanism, is naturally programmed at a lower

level. This section first describes that low-level interface. It then discusses how specifi-

cations written in the higher-level format are translated into the low-level representation.

Finally, it concludes by looking at the ISA extensions and operating system support nec-

essary in a DISE system.

3.2.1 Representing Patterns

Patterns and replacement sequences have a binary representation. Below we discuss the

representation of a pattern specification (in the next subsection we look at the representa-

tion of a replacement sequence).

27

Match
Mask

0555661

Enabled?

3132

Explicitly
tagged?

Pattern:
Opclass Code

Replacement
Instruction

Index
3940

Pattern:
Instruction Bits

Figure 3.5: The binary representation of a pattern specification.

A pattern specification, shown in Figure 3.5, of course, contains a pattern. The pat-

tern is split into subpatterns, which include opcode, register identifiers (RA, RB, andRC),

immediate, sign of the immediate, and opclass. A six bit match mask indicates which

subpatterns are to be used in matching instructions. If theRA bit in the match mask is set

to 1, then theRA pattern is used to match instructions. Otherwise, theRA field is ignored

when matching instructions.

The subpatterns for opcode, register identifiers, immediate, and immediate sign are

wrapped into an instruction (“Pattern: Instruction Bits” in Figure 3.5). To match on any

of these fields, users construct a dummy instruction with any fields that are to be used

for matching set appropriately. The values of the other fields are ignored (hence the term

dummy instruction). The reason for using an instruction to represent multiple subpatterns

is to reduce the pattern encoding size. A machine instruction is more densely encoded

than separately representing every field that can appear in any instruction in the ISA.

The opclass subpattern is represented separately (“Pattern: Opclass Code”) because

it is not encoded within an (Alpha) instruction. An opclass is represented using a 8-bit

code, which is defined by the processor vendor. An opclass code of 0 is illegal (below, we

discuss the reason for this).

In addition to the pattern, a pattern specification contains several other fields. First,

it contains an enabled flag. It also contains a replacement instruction index, which spec-

ifies the replacement sequence that will be expanded on a match (unless, as described

below, the index is taken from the trigger instruction). The instructions in a replacement

28

sequence, which are stored in memory, are referenced using a 64-bit address. To avoid

storing the entire 64-bit address in every specification, we instead store the base address

in a DISE register,$drsbase , and a 18-bit offset (the remaining bits in the quadword) in

each pattern specification. On a match, DISE computes the address of the first instruction

in the replacement sequence by shifting the offset by 3 (since replacement instructions are

quad-aligned) and adding it to the base register.$drsbase is read and written using the

instructionsd mfdr andd mtdr .

Storing the base address in a DISE register reduces the size of the pattern specification,

but it also limits the total number of replacement sequences. If the index is 18 bits long,

the total size of the replacement sequence space is 256K replacement instructions. This

size limit is not a problem for the transformations used in this dissertation. Alternatively,

instead of using a replacement instruction index, we could have used a replacement se-

quence index. Indexing by sequence increases the total number of replacement sequences

we can reference (unless each sequence contains only one instruction, in which case, the

two approaches are equivalent). But because replacement sequences have variable lengths,

this approach would require a level of indirection,i.e., a table of replacement sequence

pointers or fixed-size replacement sequence entries. The former case would require an ad-

ditional load to access a replacement sequence. The latter case would suffer from internal

fragmentation.

The final field in a specification is a flag forexplicit tagging. Explicit tagging allows

users to encode the replacement sequence index (called a tag) within the trigger instruc-

tion. For the microarchitectural implementation presented in Chapter 4 that caches pat-

terns for fast access, too many patterns (e.g., more than 16) results in performance loss.

With explicit tagging, a single pattern can map to multiple replacement sequences. Ex-

plicit tagging is generally applicable only for aware transformations, where the trigger

instructions are planted specially for DISE expansion. In this case, we can encode the

tag within the inserted instructions. As discussed in Chapter 6, explicit tagging is impor-

tant for DISE dynamic code decompression (an aware transformation). In Chapter 6, we

present explicit tagging in greater detail.

Specifications table.A memory-residentspecifications table, shown in Figure 3.6, holds

the pattern specifications. The location in memory of this table is stored in a special DISE

29

Transformation Specification Table
(in memory)

...
$dspecptr

(DISE register)

Pattern (1)
Pattern (2)
Pattern (3)

Pattern (n)
Sentinel

Figure 3.6: The DISE specifications table and special registers.

register,$dspecptr . Like $drsbase , this register is manipulated usingd mtdr andd mfdr .

The table must be a contiguous list of patterns, although patterns within the table can

be disabled. A sentinel, which is a null entry (a 0 quadword), marks the end of the list.

Because the opclass encoding in a pattern specification cannot be 0, a legal pattern can

never be confused for the sentinel.

The order of the addresses within the table is not arbitrary. It determines the prior-

ity of the patterns. Patterns at lower addresses have higher priority than those at higher

addresses. When multiple patterns match on an instruction, the pattern with the higher

priority along with its corresponding replacement sequence are selected for expansion.

Users must keep the priority of patterns in mind when modifying the specification table.

3.2.2 Representing Replacement Sequences

A replacement sequence is logically a list oftemplate instructionsanddirectives. A tem-

plate instruction is an instruction that may contain parameterized fields (i.e., references to

fields in the trigger instruction) as well as DISE opcodes or operands (i.e., DISE registers).

Each field in a template instruction has a corresponding directive that indicates whether

that field is not applicable (e.g., RC in a ldq), literal (i.e., bits are interpreted literally),

a DISE register (only applicable for register fields), a DISE opcode (only applicable for

the opcode field), or parameterized. When the directive indicates that the field is a DISE

30

Transformation Specification

T.OPCLASS == store
=> lda $d0,T.IMM(T.RB)
 stq $d0,0($d1)
 stq T.PC,8($d1)
 addq $d1,16,$d1
 cmpeq $d1,$d2,$d0
 d_ccallne $d3,$d0
 T.INST

(a)

Replacement Sequence

lda $d0,T.IMM(T.RB)
stq $d0,0($d1)
stq T.PC,8($d1)

T.OP T.RA,T.IMM(T.RB)

Literal Parameter N/A Parameter
RA RB RC IMMOpcode

Parameter Parameter

Literal
Literal

DISE Reg.
Parameter

N/A
N/A

N/A

DISE Reg.
DISE Reg.
DISE Reg.

Literal
Literal

Parameter

addq $d1,16,$d1 Literal DISE Reg. N/ADISE Reg. Literal
cmpeq $d1,$d2,$d0 Literal DISE Reg. DISE Reg. DISE Reg. N/A
d_ccallne $d3,$d0 DISE Op. N/ADISE Reg. N/ADISE Reg.

Template Instructions
Directives

Parameter

(b)

Figure 3.7: The logical representation of a replacement sequence for store address tracing:
(a) high-level format and (b) logical replacement sequence representation.

register or DISE opcode then the corresponding bits in the template instruction are inter-

preted as a DISE register or DISE opcode, respectively. When the directive indicates that

the field is parameterized, then the corresponding bits in the template instruction specify

which field in the trigger will replace the field in the template instruction. Notice that only

three bits are necessary to indicate the parameterized field (i.e., T.OPCODE, T.RA, T.RB,

T.RC, T.IMM, andT.PC), and each field in the template instruction has more than 3 bits (see

Figure 3.1(a)).

Example. Figure 3.7 makes this discussion concrete by showing an example for store

31

address tracing. Figure 3.7(a) shows the high-level, assembly-formatted transformation

specification and Figure 3.7(b) shows the logical representation of a replacement se-

quence. In store address tracing, the first, third, and last instructions are parameterized.

The first replacement instruction (lda) computes the address of the store by adding the

store’s base register (RB) to the store’s immediate field (IMM). Therefore, the directive for

the first replacement instruction’sRB field specifies that it is parameterized and theRB

field in the template instruction specifies that isT.RB; likewise for the immediate field. In

both cases, the parameterized field refers to the same field in the trigger instruction, but

it could also refer to a different field in the trigger (e.g., theRB field in the replacement

instruction parameterized withT.RA). The third template instruction is also parameterized.

It stores the instruction’s address to the log. Therefore, theRA directive is parameterized

and the bits in the template instruction encodeT.PC. Finally, the last template instruction

is parameterized. It uses all the fields in the trigger instruction includingT.OPCODE, T.RA,

T.RB, andT.IMM. Note thatRC is not used in a store instruction.

In addition, many of the replacement instructions use DISE registers. For example,

the first instruction uses register$d0 in the RB field. In this case, the directive indicates

that RB is a DISE register and theRB field in the template instruction is 0, which is

interpreted as$d0. The sixth replacement instruction uses the DISE opcoded ccallne .

The opcode directive indicates that it uses a DISE opcode and the opcode field within the

template instruction is interpreted as a DISE opcode rather than a standard Alpha opcode.

Essentially, directives give replacement instructions a wider encoding, allowing them to

refer to new opcodes and operands, unlike conventional instructions which are limited due

to their dense encoding.

Binary representation. The binary representation of a replacement sequence, shown in

Figure 3.8, is a list of replacement instructions. Each replacement instruction has three

components (two of which were discussed above): a template instruction, a set of direc-

tives, and a last flag indicating whether the replacement instruction is the last instruction

in the sequence. The template instruction is simply a 32-bit instruction. The encoding and

layout of the directives is shown in Figure 3.9. In total, the directives require 15 bits, but

we dedicate 31 bits for them to quad-align replacement instructions (i.e., 16 bits are un-

used). The directives for the register fields and the opcode field require 2 bits (3 possible

32

Template Instruction
(Instruction 1)

Directives
(Instruction 1)

1 0313263

Last?
(No)

Template Instruction
(Instruction 2)

Directives
(Instruction 2)

Template Instruction
(Instruction n)

Directives
(Instruction n)

...

Last?
(No)

Last?
(Yes)

Figure 3.8: The binary representation of a replacement sequence specification.

states). The immediate field requires only 1 bit (2 possible states), however, we dedicate

7 bits for it. In Chapter 6 we discuss some uses of these additional bits in the context of

decompression.

3.2.3 Adding/Removing Specifications

To add or remove specifications, a user manipulates the specifications table (described

above). To add a specification, the user adds the pattern specification to the specifications

table and places the corresponding replacement sequence in the replacement sequence

space, updating the pattern’s replacement sequence index, accordingly. To remove a spec-

ification, the user removes the pattern specification from the specifications table (the re-

placement sequence specification does not have to be explicitly removed).

The suggested technique for adding or removing specifications is to disable DISE

while manipulating the table. DISE is disabled using the instructiond toggle with an

immediate value of 0 (non-zero immediate values cause DISE to be enabled). From our

experiences with DISE, this approach is usually adequate. In most cases, it is not neces-

sary to transform the code that programs DISE, because this code is usually not considered

part of the main application.

Depending on the implementation of DISE, updating the table in memory may not

instantaneously update the DISE engine. The implementation described in Chapter 4,

33

(a)

(b)

Directives Encoding

Opcode

Literal - 0
Parameterized - 1
DISE Opcode - 2

RA/RB/RC

Literal - 0
Parameterized - 1

DISE register - 2

Immediate

Literal - 0
Parameterized - 1

RA

01214

Directives Layout

10

Last
Flag

RB RC Immediate

178

OpUnused

1631

Figure 3.9: Directives: (a) encoding and (b) layout.

which uses caching, is one such example. When a user modifies a specification in mem-

ory, which is also cached in a DISE hardware structure, the cached version is not instan-

taneously updated. Until the cached copy is evicted, the program is transformed using the

old specification. To force the DISE hardware to synchronize with the specifications in

memory, users can execute the instructiond sync . Users should execute this instruction,

before DISE is re-enabled.

If disabling DISE is not desirable, then users should create a new table and update

$dspecptr rather than modify the table directly. Otherwise, there may be synchronization

problems. If the table is modified in place, then the DISE structures may be updated

anytime between the execution of a store to the table and ad sync . In some cases, this

ambiguity can cause problems. Consider swapping two entries in the table in order to

interchange their priorities. This operation cannot be done atomically, but rather in two

steps: one to overwrite the first pattern with the second and one to overwrite the second

34

pattern with the first. If the table is modified in place, DISE could update its caches

between the first and second step. For a short time (i.e., until ad sync is executed), DISE

will not use one pattern specification. To avoid this problem, the user can create a new

table with the entries swapped and update$dspecptr using d mtdr . The user can then

perform ad sync to guarantee that all subsequent code is transformed using the updated

specifications. This technique is not expensive, in general, because the specifications table

is small. We have found that there are not that many patterns for most transformations (in

this dissertation, no more than 10 patterns are used for any transformation).

A worse result can occur if replacement instructions are modified in place while DISE

is enabled. It is possible that after modifying part of the replacement sequence, a miss

in the replacement sequence cache will result in the partially-modified sequence being

brought into the cache. For at least a short time, DISE will use a faulty replacement

sequence. To avoid this problem, users should either disable DISE or construct a new set

of replacement sequences, “off to the side,” update$drsbase , and perform ad sync .

3.2.4 Constructing Specifications

We have described the interface to DISE, both at a high level in Section 3.1 and at a

low level in this section. Below we discuss how these two levels are related. We also

discuss how users initialize DISE registers, and allocate and initialize memory regions

used by DISE code. Finally, we discuss some errors that can arise when constructing

specifications.

Translating specifications.Users do not need to construct specifications at the low level,

but rather can write specification using the high-level format from the previous section

(e.g., Figure 3.2(b)). These are translated to the low-level format in a process similar to

compiling conventional (non-DISE) assembly programs.

Figure 3.10(a) shows the compilation process for DISE specifications and auxiliary

code (e.g., DISE-called routines). First, a specifications translator converts the high-level,

assembly specifications into the low-level ones, which it stores in an object (.o) file. Any

auxiliary code must also be compiled into object files. This compilation can be done using

a conventional assembler. Then these object files are linked into one binary (i.e., DISE

binary). The code within the DISE binary cannot have any external references,i.e., it can

35

Compiling Specifications and Auxiliary Routines

Specifications
Translator

Assembler

Assembler

Specifications
(assembly format)

Auxiliary routines
(assembly code)

Specifications
object file

Object
file

Object
file

DISE
Linker

DISE
binary

Auxiliary routines
(assembly code)

(a)

Loading DISE-Transformed Code

DISE
Loader

DISE
binary

Program
binary In-memory program,

specifications, and
auxiliary code

(b)

Figure 3.10: Compiling DISE specifications and auxiliary routines: (a) compiling and (b)
loading.

not refer to symbols (routines or data) in the application. This restriction helps preserve

the separation of DISE state from program state. Note the name spaces for DISE code and

program code are separate. For example, both the DISE binary and the program binary

can contain a routine calledmalloc() .

For an aware transformation, DISE users can store the binary specifications and auxil-

iary code within the program binary. Combining the binaries is convenient since the user

only needs to keep track of one file. However, in some contexts, the user may want to

alter the specifications without altering the program (Chapter 7 shows an example in secu-

rity). When using a single binary, the header indicates that it contains both program code

and DISE code. The header also indicates the location within the binary file of the DISE

specifications and auxiliary code.

To run a program using DISE, the user sets an environment variable. The user also

stores the path to the DISE binary file in a second environment variable. As shown in

Figure 3.10(b), the loader takes the program binary (via the command-line) and the DISE

36

binary (via the environment variable) and moves the program, specifications, and auxiliary

code to memory. The loader must patch any references in the program or the auxiliary

code, however, this works the same as with a conventional (non-DISE) loader (in Alpha,

the loader uses a global offset table [81]). To load the specifications, the loader follows the

steps outlined in the previous subsection; it moves the patterns and replacement sequences

to memory (with DISE disabled) and then initializes$dspecptr and$drsbase . Before the

loader begins executing the C runtime library (or the program), it performs ad sync and

enables DISE.

Of course, an aware application can directly program DISE, rather than (or in addition

to) programming DISE via the loader. Furthermore, if loader support is unnecessary, then

the user does not have to set any environment variables.

Initializing DISE registers and memory. DISE registers and memory regions used in

replacement code are initialized within auxiliary code. For instance, DISE users can define

a special routine calleddise start that is executed by the loader before the program is

started. This routine can set any DISE register via the instructiond mtdr . In addition,

the auxiliary code can define data segments, which the auxiliary routines (e.g., dise start)

can initialize. If replacement instructions need access to a data segment then the address

can be placed in a DISE register. In some cases, DISE replacement code or DISE-called

functions may need to dynamically allocate memory. This functionality is achieved by

linking a memory allocation routine such asmalloc() into the DISE binary.

Figure 3.11 shows the auxiliary code for store address tracing that initializes the DISE

registers and memory. The auxiliary code defines a data segment calledsat log , which

is used to hold the address log. The auxiliary code also contains adise start routine.

dise start references the data segment using alda (which is patched by the linker and

loader). It then uses this address to set the log pointer,$d1, and the end address of the log,

$d2.

Specification errors. Although programming DISE is easier than programming a soft-

ware translator, programmers will still occasionally write faulty specifications. As with

general programming languages, there are both syntactic and semantic errors. Some of

these errors can be caught, while others cannot.

A syntactic error occurs when a user (or application) submits a specification or routine

37

data segment for log
.comm sat_log,16384

prolog (not shown)
dise_start:
 # save reg. $1 (not shown)

 # set $1 to address of log
 lda $1,sat_log

 # initialize $d1 (log pointer)
 d_mtdr $1,$d1
 # initialize $d2 (end addr.)
 lda $1,16384($1)
 d_mtdr $1,$d2

 # restore reg. $1 (not shown)

 ret
 # epilog (not shown)

Figure 3.11: Initialization code for store address tracing.

that uses an incorrect assembly format. For example, the user specifies an instruction with

a non-existent opcode or forgets a comma in a replacement instruction. As with other

programming languages, all syntactic errors are caught by the specifications translator.

There are also semantic errors in writing DISE specifications. The user might refer to a

non-existent field (e.g., T.FOO), either in the pattern or the replacement sequence. The user

might also refer to a field that does not exist for a particular type of fetched instruction. For

example, the user might specify a pattern to match on all loads that use$1 in theRC field,

even though loads do not use theRC field. These errors are also caught by the translator.

A user might also program a DISE call using absr or jsr rather than ad call . Often, when

this mistake is made, there is code following the call, which is unreachable (because the

function will return to the trigger instruction rather than the middle of the replacement

sequence, as discussed in the previous section). If the translator finds any unreachable

code, it returns an error.

38

Enable/disable DISE engine

Synchronize DISE engine with
specifications in memory

Move values between DISE
registers and conventional registers

d_mtdr /
d_mfdr

d_toggle

d_sync

d_ccalleq /
d_ccallne

d_beq /
d_bne

d_call

DISE intra-instruction branch

DISE unconditional call

DISE conditional call

(a)

(b)

General ISA instruction extensions

DISE ISA instruction extensions

Table 3.3: ISA instruction extensions: (a) extensions to the general ISA and (b) extensions
to the DISE ISA.

In addition, if users write specifications using the low-level interface—or if the speci-

fications translator is faulty—then semantic errors can occur with the low-level represen-

tation. These errors will not be caught by the translator since it is not invoked. However,

the DISE hardware will throw an exception when it discovers a faulty specification (e.g., a

replacement instruction that parameterizes a field that does not exist in the trigger instruc-

tion).

Finally, as with other programming languages, there are errors that cannot be caught.

For example, the user wanted to match on all stores, but instead wrote a pattern that

matches on all loads, or the user wrote an incorrect replacement sequence that accidently

causes a segmentation violation. Because of the simplicity of the DISE API, the expecta-

tion is that these types of errors are rare.

39

3.2.5 ISA Extensions

Throughout the last two sections, we have discussed some extensions (both instructions

and registers) to the ISA. The additional instructions are listed in Table 3.3. Some of these

extensions, like the instructiond mtdr can be used anywhere (in application code or DISE

replacement sequence code). These represent general ISA changes. Other instructions,

like d ccallne , can only be used in a DISE replacement sequence. These extensions don’t

change the ISA, but rather theDISE ISA. Both the ISA support and the DISE ISA support

are described below.

ISA support. It is important to note that the ISA changes in a DISE processor are only

extensions. The existing instructions are not changed. Furthermore, of the new instruc-

tions we have introduced, onlyd toggle , d sync , d mtdr , andd mfdr represent ISA changes

(shown in Table 3.3(a)). The other instructions (e.g., d ccallne) are instead part of the DISE

ISA (discussed below). Moreover, we can dedicate one opcode for all of these instructions

and use function bits to distinguish between them.

DISE registers can also be considered part of the ISA since they are referenced by the

instructionsd mtdr andd mfdr . However, they cannot be referenced by any other non-

replacement instruction. Therefore, their impact on the general ISA is small.

DISE ISA support. In Section 3.1, the replacement sequences for several transforma-

tions included instructions that are not part of the Alpha ISA (shown in Table 3.3(b)).

The replacement sequences also used additional operands such as DISE registers and the

instruction’s PC. All of these extensions are possible because replacement instructions

have a wider encoding than conventional instructions, allowing them to encode additional

opcodes and operands.

3.2.6 Operating System Support

DISE is a user-level tool only. It is not designed be used to transform kernel-level code.

When in kernel mode, DISE will not match on any instructions. There are potential ap-

plications of DISE that transform kernel code. For example, DISE could perform trans-

formations like those done in Nooks [84], which fault isolate device drivers. However,

restricting DISE to a user-level tool simplifies the design of the operating system and

40

General-purpose dedicated registers $d0-$d15
DISEPC

DISE-enabled status bit
In-DISE-call status bit

Pattern specifications in memory
Replacement sequence specifications in memory

Specialized register $dspecptr
Specialized register $drsbase

Specialized register $dra

Table 3.4: Architected DISE state.

DISE. Without it, system designers would have to prevent users from subverting the OS

using DISE.

As a result, only modest operating system support is necessary in a DISE system: the

OS must save and restore DISE state on a context switch. Table 3.4 lists the architectural

DISE state. Of this state, the specifications are stored in the process’s virtual address

space, and so, the OS does not have to do anything special with them. The OS must

save the DISE-enabled and in-DISE-call status bits (in addition to the other conventional

status bits), the DISEPC (in addition to the PC), the general-purpose DISE registers (in

addition to the conventional registers), and the special registers$dspecptr (pointer to the

specifications table in memory),$drsbase (base pointer to the replacement sequences in

memory), and$dra (return address on a DISE call). To save the DISE registers (general-

purpose or special), the OS uses the instructionsd mfdr andd mtdr . In addition to saving

the state of the suspended process, the OS must also synchronize the DISE engine with

the resumed process’s specifications in memory. This synchronization is done using the

instructiond sync .

3.3 Summary

DISE transforms programs using processor-based instruction macro-expansion. It inspects

every fetched instruction in the processor, and macro-expands those that match based on

41

user-defined transformation specifications. Instruction macro-expansion consists of two

parts: matching and replacement. To program DISE, users define a pattern for matching

instructions, and a replacement sequence that replaces the matched instruction. To aid

programmers, DISE provides several features including a private register set and control

flow that can be used within replacement sequences. DISE can transparently transform

unmodified executables, matching and replacing “naturally occurring” instructions. It can

also transform aware applications that have specially-crafted instructions embedded within

them. In the former case, DISE redefines the semantics of existing instructions, and in the

latter case, DISE defines how the new instructions work.

Because DISE is a hardware mechanism, it naturally has a low-level, binary interface.

However, users can write specifications at a higher level, using short blocks of assembly

code that are easy to construct and reason about. These assembly-formatted specifications

are translated into the low-level representation in a process similar to compiling a general

assembly program. As we will show in Chapters 5-7, this interface allows us to express a

broad range of transformations.

The operating system support necessary in a DISE system is small. DISE is a user-

level tool only, and therefore the primary task of the operating system is to save and restore

state on a context switch. Furthermore, most DISE state is stored in memory, and thus,

the OS does not have to do anything special with it. The OS must save the DISEPC, DISE

registers (both general-purpose and specialized), and the status bits. The OS must also

execute a synchronization instruction before starting the new (resumed) process.

This chapter presented only the DISE architecture and did not discuss the microarchi-

tecture. In the next chapter, we explore the microarchitecture, and propose and evaluate

one highly-optimized implementation of DISE.

42

Chapter 4

DISE Microarchitecture

This chapter proposes a highly-optimized implementation of the DISE microarchitecture

within an Alpha processor. Section 4.1 describes our microarchitectural implementation,

which caches specifications to reduce the overhead of macro-expansion. Section 4.2 eval-

uates the implementation, demonstrating that DISE transformation is highly efficient and

evaluating several key design parameters.

4.1 Microarchitectural Implementation

The microarchitectural implementation of DISE has two primary objectives: little to no

performance degradation on non-transformed code and transformation overhead that is

equal to or less than that of a corresponding software implementation. We propose a mi-

croarchitectural implementation that meets these two goals. As shown in Figure 4.1, we

implement DISE between the fetch unit and the decoder within a processor’s pipeline. Our

implementation caches the patterns and replacement sequences so instructions can be effi-

ciently macro-expanded within at most one or two pipeline stages. These additional stages

are the only overhead for non-transformed programs, which in general is small (i.e., the

primary cost is on a branch misprediction, which is infrequent for most applications). In

addition, the changes to the processor are primarily localized to the point where expansion

takes place. The rest of the processor requires only modest changes.

Although other microarchitectural implementations of DISE are possible, below we

43

FETCH DISE

User-defined
transformation
specification

Instructions EXECUTEInstructionsDECODE
Macro-
Expanded
Instructions

Figure 4.1: A simplified diagram of a DISE processor.

discuss one implementation. We describe the DISE engine hardware structures as well as

the pipeline organization. We also discuss DISE control flow prediction. Finally, we look

at other microarchitectural changes, beyond the DISE engine.

4.1.1 DISE Engine

Although the usage model is different (as described in Chapter 2), the DISE mechanism for

performing instruction macro-expansion is similar in implementation to the instruction-

to-microinstruction mechanism in IA32 processors that converts complex instructions to

a more regular (three register) internal form [34, 39, 41, 42].

Figure 4.2 shows the abstract structure of the implementation of the instruction macro-

expander, which transforms matching instructions into a parameterized replacement se-

quence. To lower the cost of macro-expansion, we cache patterns in apattern table (PT)

and replacement sequences in areplacement table (RT). A third structure, called thein-

stantiation logic (IL), instantiates the replacement instructions on an expansion. We dis-

cuss each of these three structures (PT, RT, and IL), below.

PT. The PT houses the pattern specifications (described in Section 3.2) for matching in-

structions. The PT is a fully-associative structure that matches every instruction to all

enabled patterns. It is ordered by priority. Each entry in the PT contains a pattern spec-

ification along with some matching logic that determines if the pattern specification in

that particular entry matches the inputted instruction (i.e., the matching logic is replicated

for each PT entry). PT entries are tagged using their index within the specifications table

(described in Chapter 3). Some PT entries may be invalid, for example, if there are fewer

44

RTRT Index
Template

Instructions,Instructions PT IL
Directives

Instructions

Matching Replacement

Figure 4.2: Abstract diagram of the DISE engine.

specifications than entries. Because the PT is fully associative and each entry has its own

matching logic, it must be small (e.g., 16 or 32 entries).

Matching an instruction on the Alpha is achieved by masking bits in the instruction

and comparing to the appropriate field in the PT entry There is one possible exception:

matching based on opclass. There are two possible implementations of opclass matching.

It might be achieved through bit masking. In fact, it is likely, the Alpha (as well as other

processors) do something similar already, since some opclasses are required by later stages

in the pipeline. For example, the dispatch stage must know whether an instruction is a store

(in Alpha, each store has a distinct 6-bit opcode), so that it can allocate a store queue entry

for it. If bit masking will not work, then a second approach is to use a table (implemented

in ROM), where the rows represent opcodes and the columns represent opclass codes.

Each entry in the table is a single bit that indicates whether the opcode at that particular

row belongs to the opclass at that particular column. Using the second approach may

require limiting the number of opclasses in order to reduce the size of the table so that it

can be accessed in one cycle.

Detecting a miss in the PT is more challenging than in a traditional cache (e.g., data

cache), because a PT miss is interpreted as a non-match. To detect PT misses, we track

the number of enabled in-memory patterns associated with each opcode in a small direct-

mapped table called thepattern counter table (PCT). In addition, the matching logic in the

PT computes the number of PT-resident patterns associated with the fetched instruction’s

opcode. If this value does not match the value in the PCT entry for that particular opcode,

then a PT miss is triggered (even though a matching pattern with the highest priority may

45

I$
engine
controller

decoder execute retire

D$

Figure 4.3: DISE controller.

already be in the PT).

A DISE controller, shown in Figure 4.3 services PT misses (as well as RT misses,

discussed below). A PT miss interrupts the processor via the controller. A software miss

handler scans each pattern in memory, going from highest priority to lowest priority. It

checks if the pattern could match any instruction with the same opcode as the fetched

instruction. The handler routine moves each such pattern into the PT, until the PT contains

only these patterns (i.e., patterns that could match on the fetched instruction’s opcode).

Of course, a pattern may already be in the PT, so it first checks the PT tags of each valid

entry. Because the PT is fully-associative, the handler can swap a memory-resident pattern

with any PT entry. The controller uses a not-recently-used (NRU) replacement strategy.

The controller also must maintain priority in the PT, which will require it to move some

patterns to either higher or lower priority entries, before bringing the new pattern into the

PT.

Although serviced similarly to software-managed TLB misses, the cost is higher due

to the additional cost of scanning patterns in memory and prioritizing patterns in the PT.

Assuming there are less than 100 patterns (a reasonable assumption, given that all trans-

formations combined in this dissertation require less than 20 patterns), then servicing the

miss could take a few hundred cycles. Therefore, frequent PT misses could significantly

degrade performance.

To synchronize the PT with memory-resident patterns, the controller flushes the PT

when ad sync is executed. The contents of the PT are subsequently faulted in on misses.

In addition to flushing the PT, the controller fills the PCT when ad sync is executed. The

DISE controller scans the pattern specifications in memory, counts the number of possible

matches for each individual opcode, and updates the PCT. Therefore, ad sync will have a

46

similar cost as a PT miss.

RT. As described in Section 3.2, each pattern specification contains a replacement se-

quence index. On a match in the PT, the low-order bits of this index are used to access

the corresponding replacement sequence in the RT, which caches replacement sequences.

For explicitly-tagged specifications, the low-order bits of the codeword tag are used as an

index rather than the index in the pattern specification.

Because the RT is not associatively searched, but rather indexed, it can be made much

larger than the PT. Possible sizes are 512 entries to 2K entries. RT entries, which do not

have to be quad-aligned, are 6 bytes rather than 8 bytes (see Section 3.2). Therefore, a

512-entry RT is 4KB and a 2K-entry RT is 16KB. The RT may be direct-mapped or set-

associative. Set associativity may increase the access time and power consumption of the

cache, however, it also reduces the conflicts. In general, increasing the RT associativity is

a good idea so long as it does not impact the clock rate. As we show in the evaluation in

Section 4.2, a 2-way set associative RT results in significantly fewer misses than a direct-

mapped RT.

To reduce access time, the RT is split inton banks wheren is the width of the processor.

Although the length of the replacement sequence is not knowna priori on a PT match

(i.e., the last flag in the replacement instruction specification determines the end of the

sequence),n replacement instructions, starting from the replacement sequence index, are

extracted (in parallel) from the RT. If the sequence is greater thann, the pipeline is stalled

andn additional instructions are extracted from the RT during the next clock cycle.

Unlike PT miss detection, RT miss detection is similar to miss detection in a con-

ventional cache. Each RT entry is tagged using the replacement instruction index. If the

replacement sequence index in the PT, or the codeword tag for explicitly-tagged specifi-

cations (which is incremented to access later instructions in the sequence), does not match

the RT tag, then a miss is triggered. A RT miss interrupts the processor via the controller.

The mechanics of RT miss handling resemble those of software TLB miss handling and

have similar costs. The pipeline is flushed and the missing specifications are loaded via

the controller. If the RT is set associative, then the controller uses an NRU replacement

strategy.

As with the PT, the controller flushes the RT when ad sync is executed.

47

Instantiation logic. The third structure is the instantiation logic, a combinational circuit

that executes instantiation directives to combine replacement literals with trigger fields

and produce the actual replacement instructions that are spliced into the application’s ex-

ecution stream.

4.1.2 Pipeline Organization

DISE is situated in the front-end of a processor’s pipeline. It logically resides between the

fetch and decode stage. To incorporate DISE into the pipeline requires a few modifications

from the diagram in Figure 4.2. First, a selector is necessary to select between the original

fetched instruction on a non-match and the DISE replacement sequence on a match. The

PT, which determines if a fetched instruction matches a pattern specification, drives the

selector. In addition, since DISE transforms a single instruction into multiple instructions,

a buffer is necessary for any excess instructions. When the buffer is full, the pipeline is

stalled. For non-superscalar machines, the additional stalls will hurt performance, but for

wider machines these stalls are not significant as Section 4.2 shows.

Even though the PT and RT are small, because they are accessed in series, it is unlikely

they can both be read in a single cycle. Given this constraint, there are two strategies for

laying out the PT and RT. These approaches are shown in Figure 4.4. In Figure 4.4(a),

the PT and RT are positioned within a single stage and a match results results in a 1-cycle

pipeline stall. In Figure 4.4(b), the PT and RT are positioned in separate stages.

These two approaches represent a tradeoff. The first approach has less impact on non-

DISE code. Instructions that do not macro-expand must pass through only one additional

pipeline stage rather than two stages. However, each DISE expansion causes a pipeline

stall. In the second approach, DISE expansion does not result in any stalls, however, it

adds an extra pipeline stage. The primary cost of an additional pipeline stage is an extra

cycle to recover from a branch misprediction. If the number of mispredictions outweighs

the number of DISE expansions then the first approach will perform better, andvice versa.

In the evaluation section (Section 4.2), we show that when DISE is enabled, the second

approach (Figure 4.4(b)) results in higher performance since DISE expansion is frequent

and branch misprediction is not for most benchmarks.

In some architectures, processor designers can optimize the organization of DISE by

48

RT

PT

BufferFetched
Instruction

Transformed
InstructionIL

(a)

RTPT

BufferFetched
Instruction

Transformed
Instruction

Stage i Stage i+1

IL

(b)

Figure 4.4: DISE engine implementations: (a) one stage with a feedback loop and (b) two
stage.

incorporating it within the decoder. Figure 4.5 shows this organization for the one stage

implementation of DISE with a feedback loop from the PT to RT. This organization re-

duces one pipeline stage. However, if the processor has a one-stage decoder as in Fig-

ure 4.5, then DISE still requires a stall for every expansion (but not an additional stage) or

one additional stage (but not two).

With the unified organization, the RT must contain pre-decoded replacement se-

quences. Because replacement sequences are programmed at the instruction level, they

must be translated (i.e., decoded) before placed in the RT. The DISE controller, which

manages the PT and RT, can also perform this translation, and abstract the internal mi-

croinstruction formats. By owning the controller, the processor vendor retains the free-

dom to change internal formats in future products. The controller translates specifications

from their external representation—a directive-annotated version of the processor’s native

ISA—to the internal formats used by the PT/RT. Pre-decoding is done on an RT fill.

49

RT

PT

BufferFetched
Instruction

Transformed
Instruction

Decoding Logic

IL

Figure 4.5: A decoder-based DISE engine implemented in one stage using a feedback
loop. DISE-specific hardware is shaded.

x86 implementation. This section has described the implementation of DISE within an

Alpha processor. Below we discuss implementing DISE in a x86 processor. We do not

provide a complete solution, but rather summarize some issues and challenges.

The x86 CISC ISA presents one implementation challenge. Pattern matching for a

CISC ISA is more difficult than for a RISC ISA. An instruction can perform many distinct

tasks, such as simultaneously call a routine and write the return address to the stack in

memory. Implementing the hardware logic to find all memory writes in an x86 architec-

ture is much more challenging than in an Alpha architecture. In addition, the x86 ISA

uses an irregular encoding. Finding the individual fields within a x86 instruction requires

more complex, and potentially higher latency, circuitry. Therefore, it may be necessary

to partially decode and reformat instructions before accessing the PT for more efficient

matching. It is likely that x86 processors already contain pre-decode facilities. However,

depending on the pipeline organization, pre-decoding might increase the stall time on a

DISE match or require an additional stage for matching.

A benefit of implementing DISE in an x86 processor is that, as described above, the

DISE mechanism is similar to the CISC-instruction-to-RISC-microinstruction in the x86

decoder [34, 39, 41, 42]. In an x86 implementation, it is possible to unify the two mecha-

nisms. Thus DISE expansion has no impact on both DISE code and non-DISE code. Fig-

ure 4.6 shows this organization. CISC-to-internal-RISC translation is performed in two

ways. Translation resulting in four or fewer microinstructions is done via combinational

logic arrays (CLAs). Translation requiring longer sequences is performed by sequentially

50

μROM

BufferFetched
Instruction

Transformed
Instruction

RTPT

Selector

Stage i Stage i+1

IL

CLA

Figure 4.6: DISE engine implementation in a CISC (x86) processor. The DISE-specific
hardware is shaded.

instantiating templates from a ROM (µROM). CLA/µROM multiplexing (andµROM in-

dexing) is based on the CISC opcode and performed by a selector, itself either a CLA or

ROM. The PT and RT parallel the selector andµROM, respectively, in functionality and

positioning. A PT match overrides both theµROM and CLA. The CISC-to-RISC and

DISE ILs are physically unified. The RT andµROM may also be unified, although the

originalµROM contents must be kept immutable and invisible.

At the same time, because the decoder in an x86 is already complicated it may be

difficult to incorporate DISE into the decoder without negatively impacting clock rate.

This problem is more prevalent for wider machines such as the Pentium 4. For such

machines, DISE may be limited to macro-expanding only one instruction at a time. If

multiple instructions require simultaneous macro-expansion, the younger instruction(s),

and all preceeding instructions, are stalled until the next cycle.

Another challenge in implementing DISE in current x86 processors arises due to the

trace cache. The trace cache removes an important benefit of DISE: no code bloat. Be-

cause a trace cache houses microinstructions that have been previously decoded, these

instructions are already expanded. Therefore, the performance characteristics of a trace

cache implementation of DISE is similar to the performance characteristics in a static bi-

nary implementation. There are still other benefits to using DISE, such as programming

ease and late-binding transformation. It may be possible to position DISE after the trace

51

cache, however, this organization would add significant complexity to both the DISE en-

gine and controller. For example, DISE would need to pattern match on pre-decoded

instructions, although users program patterns in terms of machine instructions. The con-

troller would need to translate patterns into the appropriate form.

4.1.3 DISE Control Flow

DISE control transfers are implemented by flushing the pipeline and restarting at〈new

PC:new DISEPC〉. For intra-instruction control flow, which transfer control within the

replacement sequence, the PC is unchanged and only the DISEPC is updated (i.e., to the

index within the replacement sequence of the target instruction). For inter-instruction

control flow, which transfer control to another instruction in the application, the PC is set

to the target PC and the DISEPC is set to 0 (transfers to the middle of another replacement

sequence are not allowed).

DISE calls work similarly to other inter-instruction control transfers except when they

are executed, the DISE engine is disabled and the return address is saved in a DISE register

$dra (a register suffices because there is no recursive expansion). The DISE return uses

this address to return to the trigger instruction of the replacement sequence that contained

the DISE call.

Restarting within the middle of a replacement sequence (e.g., on an intra-instruction

control transfer or after a page fault exception is handled) is facilitated primarily by the

DISE engine. The fetch unit ignores the DISEPC, instead fetching the trigger instruction.

The DISE engine recognizes the annotation and expands the replacement sequence starting

at offset DISEPC.

For simplicity, control flow within a DISE replacement sequence is always predicted

not taken. Because DISE expands instructions within the decoder, it does not have easy

(low-latency) access to the branch predictor. We could have added a DISE-only branch

predictor or added support for statically-predicted control flow. However, for the trans-

formations discussed in this dissertation, we have found that conditional calls and DISE

auxiliary functions can eliminate most mispredicted control flow.

Reducing mispredictions. As discussed in Chapter 3, the DISE ISA provides a condi-

tional call (e.g., d ccalleq andd ccallne). As shown in Figure 3.2(b) (page 27), without

52

a conditional call, the replacement sequence for store address tracing results in a mispre-

diction every time it is executed: either the branch or the call will be taken. As shown in

Figure 3.4 (page 27), a conditional call can reduce these mispredictions. The new spec-

ification has one fewer instruction because the branch and call are fused, but its primary

advantage is that it avoids frequent pipeline flushes due to mispredictions. A flush occurs

only when the conditional call is taken. Section 4.2 evaluates the performance impact the

conditional call, and shows that the conditional call is critical for store address tracing.

Furthermore, this scenario is not isolated to store address tracing. As shown in Chapters 5

and 7, it is also important for debugging and security enhancing transformations.

In addition, if users need to use more complex control flow patterns, which contains

many taken branches or jumps, then they can place this code in a DISE auxiliary routine.

DISE is disabled for routines called from a DISE sequence. Therefore, any control flow

within the routine is predicted normally (the call to the routine is still mispredicted).

4.1.4 Other Microarchitectural Changes

Changes to a DISE processor are primarily localized to the front-end stages of the pipeline

where expansion takes place. However, there are some other modest changes to the pro-

cessor, which we outline below.

New instruction support. Some new instructions must be supported (e.g., d mtdr). The

instructionsd mtdr and d mfdr (discussed in Chapter 3) can be implemented as simple

moves. Thed toggle instruction sets the DISE-enabled status bit to either 0 or 1. The

d sync instruction communicates with the DISE controller, which results in a PT/RT flush.

Both d toggle andd sync trigger a pipeline flush. In addition, the processor must have

support for conditional calls (i.e., d ccalleq , d ccallne). Finally, DISE calls (i.e., d call ,

d ccalleq , d ccallne), and returns (d ret) must enable and disable DISE, respectively; set

and unset the in-DISE-call status bit, respectively; and trigger a pipeline flush.

DISE registers and status bits. A DISE processor also requires 16 general-purpose,

DISE registers and 3 specialized, DISE registers. The size of the physical register file and

map table will need to be increased to account for these additional architected registers.

Also, two additional status bits are necessary: a DISE-enabled bit and a in-DISE-call bit.

53

Machine MIPS R10000-like, out-of-order, speculative
ISA Alpha
Processor width 4
Pipeline stages 12
Reorder buffer size 128
Reservation stations 80
Instruction cache 32KB, 2-way set associative, 1-cycle access time
Instruction TLB 64-entry, 4-way set associative
Data cache 32KB, 2-way set associative, 1-cycle access time
Data TLB 64-entry, 4-way set associative
Unified L2 cache 1MB, 4-way set associative, 12-cycle access time
Main memory infinite, 100 cycle access time
Memory bus 32 bytes wide, 1/4 processor frequency
Branch predictor Hybrid bimodal/gshare, 8K entry
Branch target buffer 256 entry

Table 4.1: Default machine characteristics.

4.2 Evaluation of the Microarchitecture

This section evaluates the microarchitectural implementation of DISE presented in the

previous section. It shows the overhead of DISE transformation, comparing DISE with

software translation. It also performs a sensitivity analysis on the pipeline organization,

DISE structures, and DISE ISA. We evaluate the DISE microarchitecture primarily using

store address tracing (one figure evaluates decompression and one table shows the number

of PT/RT entries for all transformations in this dissertation). In Chapters 5-7, we evaluate

other transformations.

4.2.1 Methodology

We evaluate DISE using simulation tools built on top of the SimpleScalar Alpha instruc-

tion set and system call definition modules [16]. We use a similar methodology throughout

this dissertation (i.e., in Chapters 4-7). Table 4.1 shows the default machine characteris-

tics. The simulator models a MIPS R10000-like 4-way superscalar processor with a 12

stage pipeline, 128 entry reorder buffer, 80 reservation stations, and aggressive branch

and load speculation. We model an on-chip memory hierarchy with 32KB instruction and

data caches and a unified 1MB L2. By default, the simulator models a 2-stage, decoder-

based implementation (the DISE processor uses 1 more pipeline stage than the baseline

54

benchmark
static attributes dynamic attributes
code size (insn) IPC I$ misses stores

bzip2 36,013 2.3884 ∼0% 16.93%
crafty 82,863 2.0447 .47% 5.46%
eon 150,998 2.1230 .61% 17.41%
gap 172,581 1.5479 .86% 11.18%
gcc 364,429 1.4368 1.58% 12.24%
gzip 38,871 2.3498 ∼0% 8.07%
mcf 32,018 1.3803 .01% 14.87%
parser 57,617 1.8122 .03% 11.29%
perlbmk 173,135 1.7513 .61% 14.59%
twolf 88,324 1.9100 .05% 7.53%
vortex 162,613 2.1834 .99% 16.91%
vpr 70,735 1.7034 ∼0% 11.61%

Table 4.2: Benchmark summary.

processor). The default configuration uses a PT and RT with 32 entries and 2K entries,

respectively. Each PT entry occupies 8 bytes and each RT entry occupies 6 bytes. There-

fore, the total size of the PT and RT is 256 bytes and 12KB, respectively. On a PT or RT

miss, the simulator flushes the pipeline and stalls for 30 cycles.

Our simulator only models single-process performance, it does not model a full sys-

tem. When we evaluate store address tracing, below, we do not model the cost of writing

the log to disk.

We transform the SPEC2000 integer benchmarks. The benchmarks are compiled for

the Alpha EV6 architecture with GCC 3.2.2 using the -O4 optimization flag. Results are

reported using complete runs on test inputs. Table 4.2 lists some characteristics of the

benchmarks that are useful in interpreting the results below. The instruction cache misses,

calls (returns), loads, and stores columns are normalized to the total number of executed

instructions.

Our simulation environment extracts all nops from both the dynamic instruction stream

and the static program image. They are inserted by the Alpha compiler to optimize two id-

iosyncratic aspects of the Alpha microarchitecture (cache-line alignment of branch targets

and clustered execution engine control). Our simulator does not model these idiosyn-

crasies, so for us the nops serve no purpose. Furthermore, when we evaluate compres-

sion/decompression (in one figure below, and in more detail, in Chapter 6), the presence

of these nops may exaggerate the benefits of compression.

55

0.0

0.5

1.0

1.5

2.0

2.5

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

DISE Binary Rewriting
bzip2

crafty eon gap gcc gzip mcf
parser

perlbmk
twolf vortex vpr

Figure 4.7: The overhead of DISE and binary rewriting for store address tracing.

4.2.2 Transformation Overhead

Figure 4.7 shows the overhead of DISE for store address tracing. In general, the overhead

of DISE transformation is low. For most benchmarks it is less than 25%. In some cases,

overheads over 50% (e.g., bzip2, eon, parser, vortex, vpr), but the overhead is always less

than 80%.

Versus static transformation. Figure 4.7 also compares DISE with a binary rewriting

implementation. The binary rewritten code contains exactly the same instructions as the

DISE transformed code (after dynamic instrumentation) because the former are not stat-

ically optimized. However, because this transformation instruments stores, there is little

opportunity for static optimization. For many benchmarks (e.g., eon, gcc, perlbmk, and

vortex), DISE outperforms binary rewriting. The increased overhead of binary rewriting

is a result of additional instruction cache misses. For larger benchmarks or benchmarks

with a significant number of instruction cache misses, the difference in overheads is large.

Oneon, the overhead of DISE is 66%, while the overhead of binary rewriting is 141%.

Cache size and processor width.Transformation has two costs. The static cost is de-

creased effective instruction cache capacity. The dynamic cost is decreased effective

pipeline throughput. DISE transformations have only the dynamic cost. Figure 4.8 isolates

these costs, by relaxing cache capacity and pipeline bandwidth constraints, respectively.

Figure 4.8(a) shows relative execution times of DISE and binary rewriting on 4-wide

processors with instruction caches of varying sizes. As cache size increases, static over-

head decreases and the dynamic overhead remains constant. For the binary rewriting

implementation, the relative total overhead decreases. The DISE implementation does not

56

0

1

2

3

4

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

Binary Rewriting
DISE
Baseline

8k 8k 8k 8k 8k 8k 8k 8k 8k 8k 8k 8k32
k

32
k

32
k

32
k

32
k

32
k

32
k

32
k

32
k

32
k

32
k

32
k

12
8k

12
8k

12
8k

12
8k

12
8k

12
8k

12
8k

12
8k

12
8k

12
8k

12
8k

12
8k

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

pe
rf

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

(a)

0

1

2

3

4

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

Binary Rewriting
DISE
Baseline

2w 2w 2w 2w 2w 2w 2w 2w 2w 2w 2w 2w4w 4w 4w 4w 4w 4w 4w 4w 4w 4w 4w 4w8w 8w 8w 8w 8w 8w 8w 8w 8w 8w 8w 8w16
w

16
w

16
w

16
w

16
w

16
w

16
w

16
w

16
w

16
w

16
w

16
w

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

(b)

Figure 4.8: Varying instruction cache size and processor width. The overhead of store
address tracing in DISE and binary rewriting for several different (a) instruction cache
sizes and (b) processor widths.

have any static overhead, so the relative dynamic overhead grows as the baseline perfor-

mance improves with the growing cache size. These trends favor DISE. Physical cache

size is limited by access latency while instruction working sets are growing.

Figure 4.8(b) shows relative performance on 32KB instruction-cache processors of

different widths. At high widths, data dependences limit parallelism within a fixed re-

ordering window, allowing replacement code to exploit idle resources at little perceived

cost. Although this trend is apparent for DISE, the binary rewriting implementation does

not improve as rapidly with wider machines. While increased processor width reduces the

dynamic cost of transformations, the static cost remains and, in fact, becomes relatively

larger. As the absolute cost of the application shrinks, the relative cost of each cache

miss grows. This trend also bodes well for DISE: its advantage over binary rewriting will

increase as processor performance grows.

57

1.0

1.2

1.4

1.6

1.8

2.0

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

+2stall +1stall +2pipe +1pipe free

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

Figure 4.9: Performance impact of the DISE pipeline configuration.

4.2.3 Sensitivity Analysis

Pipeline configuration. Up to now, we have assumed a 2-stage decoder-based implemen-

tation of DISE, which has one more front-end pipeline stage than the baseline machine.

Here we look at other possible configurations. As discussed in Section 4.1, fitting DISE

into a single-cycle decoder (e.g., Alpha decoder) requires either adding another decoding

stage or incurring a single cycle stall on every successful DISE expansion. Furthermore,

on some architectures it may not be possible to fit DISE within the decoder at all. In

this case, DISE will require two stages or a two cycle stall for every expansion. The per-

formance of these various implementations is evaluated in Figure 4.9 for store address

tracing. The bars+2stall and+1stall represent implementations that add 2 or 1 cycles for

every expansion, respectively. These implementations do not change the pipeline length.

The bars+2pipe and+1pipe represent implementations with 2 or 1 additional pipeline

stages, respectively. Macro-expansion does not cause a stall for these implementations.

The freebar, shown for comparison purposes, represents a DISE implementation with no

macro-expansion cost.

The effects in Figure 4.9 are intuitive: the penalty of an additional decoding stage is

proportional to the frequency of mispredicted branches, typically around 5% (10% for 2

additional stages). The penalty of a single-cycle stall per expansion is proportional to the

total number of expansions (multiplied by two for 2-cycle stall). The advantage of the

stall option is that there is no performance degradation on non-transformed code. Unfor-

tunately, expansion frequency is often much higher than branch misprediction frequency.

Store address tracing, for instance, expands about 12% of dynamic instructions. If heavy

58

Transformation Number of PT entries Number of RT entries
Store address tracing (Chapter 3) 1 (match stores) 7
Debugging breakpoint (Chapter 5) 1 (match codewords) 2
Debugging watchpoint (Chapter 5) 1 (match stores) 8
Decompression (Chapter 6) 1 (match codewords) >2K
Return address protection (Chapter 7)2 (match calls/returns) 12
Pointer protection (Chapter 7) 2 (match pointer loads/stores)4

Table 4.3: Number of PT and RT entries for each transformation shown in this dissertation.

DISE use is projected, the elongated pipeline is the more sensible choice. For the re-

mainder of the evaluation, we assume this design. We also assume the decoder-based

implementation is possible (+1pipe), i.e., only one additional pipeline stage.

PT and RT size. Table 4.3 shows the number of PT entries and RT entries for each

transformation used in this dissertation (some of these transformations are described in

later chapters). Because we have not found a transformation that requires a large number

of patterns (none of our transformations require more than 2 patterns) we do not evaluate

the impact of PT size on performance.

On the other hand, we have found one transformation, decompression (presented

briefly in Chapter 3 on page 22 and presented in greater detail in Chapter 6), that can

fill a 2K RT for many benchmarks. Here we evaluate the impact of RT size and config-

uration on performance for decompression. To model an RT miss, which has a similar

cost as a software-managed TLB miss, we flush the pipeline and stall for 30 cycles. We

use decompression dictionaries that were selected to minimize code size without regard

to RT misses. Although we have not described decompression in great detail (we do in

Chapter 6), the details are mostly irrelevant for this study.

Figure 4.10 shows the performance for four RT configurations, 512 and 2K entries,

each both direct-mapped and 2-way set-associative. Note that we only show results for

half the benchmarks, but these are representative of the entire suite. In Figure 4.10, the

2K, 2-way RT (nearly) matches the perfect RT in all benchmarks. The direct-mapped con-

figuration performs almost as well. The effectiveness of 512-entry RTs depends largely on

the code size of the benchmark. For smaller programs (e.g., gzip, mcf), the performance

is good, especially with the set-associative RT. For larger programs, the performance de-

grades significantly. If RT misses are a significant problem, we can reduce RT misses by

59

0

1

2

3

4
Perfect
2K/2-SA
2K/DM
512/2-SA
512/DM

crafty gap gcc gzip mcf vortex

5.
10

Figure 4.10: Performance impact of the RT configuration.

limiting the size of the dictionary. In this way, we can trade off compression for perfor-

mance.

DISE ISA. As described in Section 4.1, DISE control flow is predicted not taken, which

can lead to frequent mispredictions in some contexts. In store address tracing, the re-

placement code calls a DISE routine, but only when the log is full (a rare event). In this

case, one misprediction is incurred every time the sequence is executed. Either the call

is mispredicted (if it is executed) or the branch that jumps over the call is mispredicted.

We can optimize this scenario by fusing the call and branch into a conditional call. By

using a conditional call, we eliminate one instruction, but more importantly, we eliminate

a misprediction when the call is not taken.

In the evaluation above, the DISE ISA included a conditional call. Here we look

at the impact on performance when the DISE ISA does not include a conditional call.

Figure 4.11 shows the performance with and without a conditional call for store address

tracing. With a conditional call, the overhead is usually less than 25% and always less

than 80%. Without the conditional call we observe slowdowns greater than 3 times for

most benchmarks and sometimes as high as 6 times (e.g., eon). Clearly, a conditional

call is critical in a DISE system. For architectures that do not support conditional calls, a

conditional should be added to the DISE ISA.

60

1

2

3

4

5

6

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

no ccall ccall

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

Figure 4.11: Performance impact of a conditional call.

4.3 Summary

In this chapter, we presented one optimized implementation of the DISE microarchitecture

that uses caching to reduce the overhead of transformation. With caching, the penalty of

macro-expanding instructions is reduced to one extra cycle per branch mispredict (which

is generally rare). Although there is still the cost of executing the injected instructions,

the transformation overhead is generally low (e.g., less than 25%). The low overhead is in

large part because, unlike software translators, DISE has no impact on instruction cache

performance.

In addition, DISE requires only modest changes to the processor. Nearly all changes

are localized to the two front-end stages where expansion takes place.

The evaluation in this chapter demonstrated that DISE overhead is low, usually less

than 25%. Furthermore, the evaluation showed that DISE outperforms software transla-

tion and that trends in application workloads (i.e., larger memory footprints) will widen

this gap. The evaluation also looked at the sensitivity to several key design parameters

including pipeline organization, and RT configuration.

Although we have shown the DISE mechanism, in detail, in both this chapter and the

previous chapter, we have not demonstrated the utility of DISE. In subsequent chapters, we

will demonstrate DISE’s utility in three different contexts: debugging, code compression,

and security.

61

Chapter 5

Debugging with DISE

Programming errors (bugs) are an unfortunate but inevitable part of the application de-

velopment cycle, and debugging, the identification and repair of these errors, is a major

enterprise. Although tools exist to identify the sources of certain classes of errors (e.g.,

memory leaks), in general there is no substitute for interactive debugging. A user employs

a debuggerto observe a bug as it develops in order to trace it to its origin; a debugger

allows a user to control the execution of an application and inspect/manipulate its state.

This chapter looks at the applications of DISE in debugging. It focuses on interac-

tive debugging, showing that DISE can aid interactive debuggers in efficiently and non-

intrusively monitoring (buggy) applications. In particular, interactive debuggers can use

DISE to implementbreakpointsand watchpoints, two important, but often, inefficient,

debugging tools. Breakpoints (sometimes calledcontrol breakpoints) and watchpoints

(sometimes calleddata breakpoints) allow users to focus on the application’s instructions

and data that may be pertinent to a particular bug. A breakpoint transfers control to the

user when the application executes a user-specified instruction. A watchpoint transfers

control to the user when the value of a user-specified expression changes. Both break-

points and watchpoints can beconditionalso that control is only transferred if the break-

point/watchpoint criterion is met and a user-specified predicate is true. Essentially, break-

points, watchpoints, and conditionals reduce the frequency of user-application interac-

tions, easing the intellectual burden on users and accelerating the debugging process.

62

Unfortunately, the natural implementation of breakpoints and watchpoints can be un-

acceptably inefficient. For safety and simplicity, the debugger and the application it con-

trols typically reside in different processes [74]. The breakpoint and watchpoint logic re-

sides in the debugger, necessitating an application-debugger context switch to determine

whether session control should be transferred to the user. If control does ultimately trans-

fer to the user, the overhead of the switch becomes irrelevant. Most application-debugger

context switches, however, are not masked by user interaction, and their cost is perceived

as additional application latency, resulting in substantial overhead (e.g., as high as 40,000

times slowdown in current commercial and open-source debuggers).

We explore injecting debugging logic into the application itself, obviating the need for

unmasked application-debugger context switches. Breakpoints and watchpoints are imple-

mented as program transformations. The transformed code identifies necessary transitions

to the user, and in such cases (and only in such cases), traps and initiates a context switch

to the debugger. To implement a breakpoint, the break instruction is transformed into a

trap. To implement a watchpoint, all store instructions (the only type of instruction that

can change a the memory-resident variable that appears in an expression) are transformed

into a sequence of code that checks whether any of the watched expressions have changed.

If any of the watched expressions has changed, then the transformed code executes a trap.

To implement a conditional breakpoint or watchpoint, the transformed code also includes

the evaluation of the predicate.

All of these transformations avoid costly unmasked context switches to the debugger.

Of course, there is the bandwidth cost of the additional instructions. To be sure, this cost

increases with the density of breakpoints and the complexity of conditionals, but it remains

comfortably lower (by many orders of magnitude) than the cost of any implementation that

involves even a minimal amount of unmasked context switching.

Previous proposals used software translation to inject debugging logic into the appli-

cation [6, 51, 89, 91]. Unfortunately, this approach has major deficiencies. First, it is

cumbersome for the debugger implementor because it requires the debugger to perform

register scavenging, register re-allocation, and branch retargeting. It is also inefficient

because the transformation process contributes to the perceived latency of the debugging

63

session; and the transformed code is bloated, degrading instruction cache performance (al-

though this overhead is certainly lower than that arising from unmasked context switches).

Most importantly, injecting debugger code and data into an application violates the sep-

aration of application and debugger, allowing a buggy application to corrupt debugger

structures or the debugger to perturb application behavior (e.g., by changing the stack-

frame layout), potentially resulting in dreaded “heisenbugs.” Alternatively, the hardware

itself may be augmented to perform some subset of the debugger’s duties. The challenge

here is in defining support that is both efficient and sufficiently flexible to allow arbitrarily

complex and many watchpoints and conditions.

This chapter shows that DISE can be used to implement interactive breakpoints and

watchpoints, conditional and otherwise, without the above shortcomings [25]. Because

DISE has a declarative, simple-to-use interface, implementing the debugger is much less

work. DISE specifications are small, simple pieces of code. DISE transformation is also

efficient. The overhead of macro-expanding instructions is negligible and DISE has no

impact on instruction cache performance. DISE also provides features (e.g., a private

register space) that enforce the separation of application and debugger despite the fact

that it dynamically intermingles code from each. Finally, because DISE is programmable,

debuggers can use DISE with arbitrarily complex breakpoints and watchpoints.

The focus of this chapter is on interactive debugging and on the breakpoint/watchpoint

interface presented to the user by existing interactive debuggers. However, DISE can be

used in other areas of debugging besidesinteractivedebugging. The same techniques we

describe can also efficiently implement other debugging interfaces: non-interactive ones

like Purify [45] and Valgrind [80] and programmatic ones like iWatcher [97].

This chapter is organized as follows. Section 5.1 gives background on interactive de-

bugging. Section 5.2 describes the use of DISE in implementing efficient breakpoints and

watchpoints. Section 5.3 compares the performance of a DISE-based approach to exist-

ing implementations. Finally, Section 5.4 discusses other techniques for implementing

watchpoints and compares them with our DISE-based approach.

64

5.1 Interactive Debugging Background

A debugging session consists of three principals: theapplication to be debugged, the

user, and thedebuggerwhich serves as a mediator between the two. The user is the

slowest party. Breakpoints, watchpoints, and conditionals reduce the frequency ofuser

transitions—transitions from the debugger to the user and back—and can dramatically

accelerate the debugging process. Conversely, they increase the frequency ofdebugger

transitions—transitions from the application to the debugger and back. Debugger tran-

sitions that are not masked by corresponding user transitions are perceived as additional

application latency.

When user-transition frequency is low (typically a user’s goal), the aggregate la-

tency of debugger transitions can dominate execution time. As a consequence, break-

point/watchpoint implementations can be evaluated by the number ofspurious(unmasked)

debugger transitions they generate. The more spurious transitions, the greater the per-

ceived overhead. There are three types of spurious transitions.Spurious address transi-

tions are transitions to the debugger that occur even though watched data is not written,

or equivalently no instruction tagged as a breakpoint is executed.Spurious value tran-

sitionsapply to watchpoints only and occur when a variable in a watched expression is

updated but the value of the expression is unchanged. The most common cause for this is

a silent store, which is a store that overwrites a value with the same value [62].Spurious

predicate transitionsapply to conditional breakpoints and watchpoints and occur when

the associated predicate evaluates to false.

Below we summarize well-established implementation techniques employed by

widely-used debuggers. Techniques still under active researched are discussed in Sec-

tion 5.4.

Single-stepping vs. trap-handling.The näıve breakpoint and watchpoint implementa-

tion relies onsingle-stepping. The application transfers control to the debugger after ev-

ery instruction (or source-level statement), and checks whether any of the currently active

breakpoints or watchpoint criteria are satisfied before single-stepping to the next instruc-

tion. Single-stepping is terribly inefficient, causing many spurious address transitions.

Unfortunately, even debuggers that support superior implementations (see below) often

65

resort to it. For example, Microsoft’s Visual Studio 6.0 debugger uses single-stepping

when watching global variables.

Trap handling is an attractive alternative that avoids many spurious address transi-

tions. The debugger registers a trap handler with the operating system and configures

either the application or the processor to generate a trap when an instruction (datum) at

a particular address is executed (written). The fast breakpoint and watchpoint techniques

that are implemented in modern debuggers all use this approach. Note that while there

are straightforward mechanisms for trapping on address-based events, there are no such

mechanisms for trapping on events related to values. As a result, trap handling solutions

only reduce spurious address transitions. There are no currently used debugger techniques

that eliminate spurious value and predicate transitions.

Breakpoint techniques. The standard trap handling solution for breakpoints uses static

binary transformation to temporarily replace intended breakpoint instructions with explicit

trapping instructions [74]. This implementation has excellent performance characteris-

tics. It induces no spurious address transitions and it degrades application performance

only when the breakpoint is encountered. Alternatively, some architectures (e.g., x86,

IA-64, PowerPC) provide breakpoint registers. The debugger loads these registers with

the addresses of intended breakpoints; the processor traps when an instruction whose PC

matches one of these addresses is about to commit. Breakpoint registers are convenient,

but typically there are only a few of them. If the number of breakpoints required is larger

than the number of hardware registers, the previous techniques are used for the remainder.

Watchpoint techniques.Hardware registers can also be used to implement watchpoints.

The debugger loads these with the addresses of the variables in the watched expression,

and the processor traps on a store to any of these addresses. For example, GNU’s gdb

5.3.90 supports hardware watchpoint registers on Linux/x86 (notice that when setting

some watchpoints, gdb prints the message “Hardware watchpoint 1”). Again, the draw-

back of hardware watchpoint registers is their limited number. IA-32 has four and these

also serve as breakpoint registers, IA-64 also has four, PowerPC has one, and some archi-

tectures like SPARC and Alpha have none. While four watchpoint registers may some-

times suffice, the user may wish to watch multiple expressions, multiple distinct pieces of

data (e.g., appearing in a complex expression or representing a linked data structure), or

66

a single large piece of data like a structure or an array. IA-64 addresses the latter short-

coming by allowing low-order bits to be ignored during matching, letting a single register

watch a larger memory segment. However, this is not a general solution.

If the number of watched addresses exceeds the number of hardware watchpoint reg-

isters, the virtual memory system can be harnessed to generate traps on writes to certain

addresses [5]. Here, the debugger uses an interface likemprotect() to remove the write

permissions from the page on which the watched address resides. The virtual memory

implementation can be used to watch an unlimited number of addresses, but at the cost

spurious address transitions. Spatial data locality makes it likely that frequently written

non-watched data resides on the same page as watched data.

Virtual memory and hardware registers can easily implement watchpoints provided

that all addresses referenced by the watched expression can be statically calculated by the

debugger. Addresses generated by indirection (e.g., pointer dereferences or dynamically

indexed array elements) cannot be statically determined. To watch an indirect expression

*p, the debugger could watch the base addressp then update the*p watch condition when-

ever the value ofp changes. However, we know of no commercial debuggers that actually

implement this. Instead, they resort to (highly inefficient) single stepping. In gdb, for ex-

ample, a request to watch a pointer variablep elicits the message “Hardware watchpoint.”

A similar request to watch*p yields the message “Watchpoint.”

5.2 Debugging with DISE

The high cost of watchpoints and conditional breakpoints in conventional debuggers is

primarily due to the fact that the application and debugger reside in separate processes.

Reducing the overhead of these vital primitives in a significant way requires embedding

pieces of the debugger—address matching and condition-testing logic—into the applica-

tion itself. As obviously beneficial as this approach is, existing debuggers do not use it

because it is cumbersome (requiring register scavenging, register re-allocation, and branch

retargeting), inefficient (due to code bloat), dangerous (because a buggy application may

corrupt debugger state), and intrusive (because the extra debugger code may perturb ap-

plication behavior,e.g., by changing stack-frame layout). DISE-based implementations

67

realize the benefits of injecting debugger logic into the application, without these prob-

lems.

In this discussion, it is important to remember that the DISE specifications are auto-

matically generated by the debugger (using templates) in response to the user’s setting

of breakpoints and watchpoints. We are not relying on the user to manually program the

correct specifications, so the debugging session is vulnerable to specification errors to the

same extent that it is vulnerable to errors in any other part of the debugger.

5.2.1 Breakpoints

There is little need to use DISE to implement unconditional breakpoints, because the static

binary-transformation implementation is straightforward enough and performs well [74].

Nevertheless, we discuss how this can be done in DISE.

The DISE approach parallels the binary transformation approach. The breakpoint in-

struction is replaced with a DISE codeword. An aware transformation is defined to match

and expand on that codeword. The replacement sequence consists of a trapping instruction

followed by the original instruction. This implementation is actually more efficient than

the conventional rewriting one, because it does not require a three step procedure—restore

original instruction, single-step, re-install trapping instruction—to restart the application.

If DISE is extended to support PC matching, then a second approach is possible, which

parallels hardware breakpoint registers. The replacement sequence is unchanged, but the

pattern matches the instruction’s PC. Unlike breakpoint registers, DISE would have no

limit on the number of breakpoints. Unfortunately, PC matching would significantly in-

crease the size of each pattern stored in memory and the PT (by 64 bits), and we have not

found a strong enough application of it, to merit adding it to DISE.

5.2.2 Watchpoints

Although far more efficient, the DISE watchpoint implementation parallels single-

stepping. In DISE, watchpoint specifications match and replace stores. The replacement

sequence varies in length depending on the number and complexity of the watched expres-

sions. A näıve specification for watching a single static (at least within the current scope)

68

Watchpoint Specification

match on stores
perform store
load watched val
comp. w/ old val
same? branch
diff? trap to OS

T.OPCLASS == store
=> T.INST
 ldq $d0,0($dar)
 cmpeq $d0,$dpv,$d0
 d_bne $d0,1
 trap

(a)

With Conditional Call
match on stores
perform store
load watched val
comp. w/ old val
diff? call handler

T.OPCLASS == store
=> T.INST
 ldq $d0,0($dar)
 cmpeq $d0,$dpv,$d0
 d_ccalleq $dhd, $d0

(b)

With Address Match Gating

match on stores
perform store
get address
align address
comp. w/ old val
diff? call handler

T.OPCLASS == store
=> T.INST
 lda $d0,T.IMM(T.RB)
 bic $d0,0x7,$d0
 cmpeq $d0,$dar,$d0
 d_ccalleq $dhd, $d0

(c)

With Isolation
match on stores
get address
get segment ID
compare to
segment ID
diff? call error
perform store
align address
comp. w/ old val
diff? call handler

T.OPCLASS == store
=> lda $d0,T.IMM(T.RB)
 srl $d0,11,$d1
 cmpeq $d1,
 $dseg,$d1
 d_ccalleq $derr,$d1
 T.INST
 bic $d0,0x7,$d0
 cmpeq $d0,$dar,$d0
 d_ccalleq $dhd, $d0

(d)

Figure 5.1: Example implementations of a single watchpoint in DISE: (a) Naı̈ve, (b) with
conditional call, (c) with address match gating, (d) with isolation.

variable consists of the five instructions appearing in Figure 5.1(a): (i) the original store

(T.INST), (ii) a load of the watched variable from a statically-calculated address stored in

DISE register$dar , (iii) a comparison of the previous value stored in DISE register$dpv

and the current value$d0, (iv) a DISE intra-instruction branch that skips one instruction

if the values match, and (v) a trap. The sequence branches over the trap if the expression

does not change in value.

Optimization I: Conditional call/trap. The preceding specification works correctly but

often performs poorly. As discussed in Chapter 4, DISE branches by flushing, refetching

the original program instruction and re-expanding starting at a new DISEPC. This implies

a pipeline flush on every store that does not change the value of the watched expression.

As stores typically make up about 10-15% of the dynamic instruction stream, this is a

costly proposition.

As stated in Chapter 4, the DISE ISA supports a conditional call (d ccalleq and

69

d ccallne), that calls a routine based on the value of a register (i.e., second operand). We

can place the trap in a debugger-generated function (handler). Figure 5.1(b) shows the op-

timized specification. If the watched value has changed (i.e., $d0 is 0), then the instruction

d ccalleq callshandler (the address ofhandler is stored in DISE register$dhd).

We could also add a conditional trap (d ctrapeq andd ctrapne) to the DISE ISA. With

a conditional trap, we would avoid executing the call and the debugger would not need to

generatehandler . However, the conditional trap is not a strictly necessary extension since

we can achieve the same functionality using a conditional call and a handler function. For

this reason, we do not include a conditional trap in the DISE ISA.

Optimization II: Address match gating. Another source of inefficiency in the naı̈ve

specification is the load of the watched variable. Loads are expensive because data cache

access is high latency and low bandwidth. Replacing every store with a replacement se-

quence that includes a load—or multiple loads if multiple expressions or complex expres-

sions are watched—increases load port contention and may degrade performance.

The solution to this problem (Figure 5.1(c)) mirrors the virtual-memory and hardware-

register techniques. Rather than always re-evaluating the watched expression, the replace-

ment sequence first examines the store address. The expression is only re-evaluated if the

store address matches a watched address. The expression re-evaluation is performed in

the handler routine rather than inlined into the replacement sequence. Load contention is

reduced and performance improved because an expensive load is replaced by a cheaper

address comparison.

Unless care is taken, address matching can miss “partial” read/write overlaps,e.g., a

long (4-byte) store to the lower half of a watched quad (8-byte) variable. Therefore, when

the sizes of the watched and stored data differ, the address of the smaller must be aligned

with that of the larger (via logical-bit-clearbic in Figure 5.1(c)). For instance, when

watching a byte and storing a quad, the watched address is quad aligned. Conversely,

when watching a quad and storing a byte, the store address is quad aligned.

With this formulation, the replacement sequence for a store (Figure 5.1(c)) is: (i) the

original store, (ii) an ALU operation that re-constructs the store address from the base

address register and immediate, (iii) potentially a logical-bit-clear operation to align either

the store address or the watched address, (iv) a comparison of this address to the watched

70

get watch address
get old value
get current value
change?
no, continue
yes, update current value
and trap to debugger

prolog / save regs $1-$4 (not shown)
...
lda $1,glob_ptr
ldq $2,0($1)
ldq $3,8($1)
ldq $2,0($2)
cmpeq $3,$2,$3
bne $3,skip
stq $2,8($1)
trap

skip:
epilog / restore regs (not shown)
...
d_ret

Figure 5.2: An examplehandler() routine, which evaluates the watchpoint expression.

address which is stored in DISE register$dar , and (v) a conditional call to a debugger-

generated function (i.e., handler), which is rarely taken.

Debugger-generated function.The final watchpoint implementation (above) requires the

debugger to dynamically generate a function and add it into the application’s text segment.

The debugger encodes the address of this function into a DISE register, which is used by

the conditional call (for simplicity, we show the name of the function in the conditional

call rather than the DISE register). Figure 5.2 shows the function that accompanies the

DISE specifications of Figure 5.1(c).

In addition, the debugger utilizes some DISE allocated memory (described in Chap-

ter 3) where it stores watched addresses and current values (to determine when a watched

variable has changed). When evaluating expressions, the debugger-generated function

indexes this region of memory to access this data.

Protecting both the debugger’s embedded data and DISE state.By adding a temporary

copy of some of its own data to the debugged application’s virtual address space, the

debugger makes this data vulnerable to corruption by a buggy application. In addition,

DISE specifications, which are stored in memory, are also vulnerable to corruption. Often

this is not a problem, as this data is small and the application itself naturally contains no

71

pointers into it. If write access is unnecessary, then we can use the virtual memory system

to protect this data. The write permission is disabled for all pages that contain debugger

embedded data or DISE state. A write to this memory will result in a trap to the operating

system. This approach could work for the specifications and handler routine shown in

Figure 5.1(d) and 5.2 with a few minor changes. When the value of the watchpoint is

changed, the debugger must update the value rather than the handler routine. Also, some

memory, which is writable, must be available to the handler routine for saving the scratch

registers.

If the handler or the replacement sequence requires write access to the debugger’s

data, then the debugger can program DISE to isolate the debugger and DISE state from

an errant application memory write. The same specifications that test store addresses

against watched addresses can also test them against the debugger’s own data region and

the region containing DISE specifications (similar to software-based fault isolation [90]).

The specification in Figure 5.1(d) augments that in Figure 5.1(c) to branch to an error

handler if the store refers to an address in the debugger’s 2KB data segment (the 21 high

order bits of which are specified by the DISE register$dseg). DISE-based protection

monitors all executed code (e.g., dynamically generated code or shared libraries), which is

not true for previous approaches that statically transform the debugged application [6, 51,

89, 91]. In general, the watchpoint specification may be combined with any other DISE

specifications, allowing,e.g., compressed (see Chapter 6) code to be debugged.

Multithreading DISE function calls. A taken DISE function call requires two pipeline

flushes, one on the call itself and one on the return. The conditional call instruction means

this cost is incurred only when a watched address is written, but the aggregate cost can be

high for frequently written watchpoints. We can eliminate this cost by adapting a tech-

nique that was previously proposed to reduce the cost of short exception-handling routines

like TLB miss handlers, avoiding the pipeline flushes that implement program/exception-

handler/program serialization by executing the exception handler on another thread con-

text in a multithreaded processor [98]. We simply execute the body of a DISE-called

function on a separate thread. The mechanics of the technique are quite similar to, and

actually simpler than, those of the previously proposed mechanism. Modified retirement

logic provides global in-order retirement for the now-segmented main application thread

72

and exception-handler/function-body thread. Unlike the previously proposed scheme,

which must support precise application-handler communication via the exception regis-

ters, a DISE function body only communicates with the application thread via memory.

This means that correct data dependences can be established by a simple extension to the

function thread’s store queue pointer; register renaming is not modified. iWatcher uses a

similar technique to reduce the cost of its function calls [97].

Watching multiple addresses.Our optimized replacement sequence matches the current

store’s address to the watched variable’s address as a preliminary test that avoids the po-

tentially more expensive expression value test. For scalar, single-address expressions, the

watched address is stored in a DISE register. In general, a user will set watchpoints on

multiple or complex expressions that require comparisons of the current store’s address to

multiple watched addresses.

There are efficient ways of implementing multiple matches. If there are fewer watched

addresses than available DISE registers, serial comparison is used. Otherwise, if the

watched addresses are in a small range—for instance, the user may be watching a structure,

all the elements in a small array, or several nearby variables—the replacement sequence

checks the store’s address against the upper and lower bounds of the region rather than

individual addresses in it. Finally, if the number of watched addresses is both large and

sparse, the debugger sets up a watched address bitmap similar to a Bloom filter [12]—

in which zeros indicate definite negatives, and ones indicate only probable positives—in

its static data region and hashes each store address into this bitmap. The last technique

may trigger some spurious calls to the debugger-generated function, but these should be

compensated for by the simplified address checking sequence. In general, because the

replacement sequence is a piece of software, it may use any address comparison strategy

whatsoever.

Pattern matching optimizations. In addition to replacement sequence optimizations,

the debugger may also modify the watchpoint pattern specification to trigger on only a

subset of the stores. For example, if all of the watched variables are either in the static

data segment or the heap, the debugger can choose not to expand stores to the stack by

specifying two patterns: a higher-priority pattern for stores to the stack which expands to

the original store, and a lower-priority pattern for stores in general which expands to the

73

watchpoint replacement sequence.

The same technique cannot be used if only stack variables are watched because the

stack can be accessed indirectly through registers other than the stack pointer. However,

the debugger may choose to activate and deactivate the watchpoint expansion when the

program enters or leaves the corresponding function’s scope. The debugger can set an

efficient hook to the scope entry and exit points by setting breakpoints on the function’s

first and last instructions.

5.2.3 Conditionals

With support for DISE calls to debugger-generated functions, implementing conditional

watchpoints is trivial. The condition itself is compiled into the debugger-generated func-

tion and guards the trap. The conditional breakpoint implementation is somewhat trickier

than the conditional watchpoint case. For conditional breakpoints—which do not require

cheap address tests to bypass the more expensive condition test—it often makes sense to

compile the condition into the replacement sequence directly. In this case, one or two

DISE registers are used as temporaries to evaluate the conditional expression from auxil-

iary information in the debugger’s static data area.

5.2.4 Discussion

DISE is a less cumbersome, less intrusive, safer, and better performing form of binary

transformation. With the help of DISE, the debugger does not need to modify the appli-

cation binary, except in two well-defined and simple ways,i.e., appending a dynamically-

generated function and small data region to the application’s text and data segments, re-

spectively. All would-be modifications to existing code are performed via DISE transfor-

mations, transparent to the application itself, leaving the application statically unchanged

and unbloated. DISE is also far less intrusive than any approaches that transform the static

image of the program. It does not change the placement of any code or data, and it does

not impact many hardware performance counters. Finally, the DISE mechanism itself can

also be used to ensure that debugger structures embedded in the application are protected

from buggy applications.

74

On the other hand, hardware-assisted debugging (e.g., via watchpoint registers) can

have nil overhead if there are no spurious value or predicate transitions, that is if all

breakpoints and watchpoints are unconditional and if all writes to watched addresses also

change values of the corresponding expressions. While DISE’s overhead is not zero in

this scenario, it is low as we will see in the next section. DISE’s advantage over hardware-

assisted debugging manifests if writes to watched addresses do not always change values

of watched expressions or if conditional breakpoints and watchpoints are used, in which

case DISE’s small, constant overhead will be smaller than that resulting from expensive

spurious transitions.

5.3 Evaluation of DISE Debugging

We use cycle-level simulation to measure the overhead of the DISE implementation of

watchpoints and compare it to the overhead of four existing watchpoint implementations:

source statement single-stepping, trap handling based on the virtual memory system, trap

handling based on hardware watchpoint registers, and static code transformation via bi-

nary rewriting. Our experiments focus on conditional and unconditional watchpoints.

Unconditional breakpoints have a widely-used “ideal” implementation via static binary

transformation. Conditional breakpoints exhibit cross-implementation performance trends

relative to unconditional breakpoints that are similar to the trends exhibited by conditional

watchpoints relative to unconditional ones. We experiment with several different kinds of

watchpoints—scalar, array, and complex expression—and also compare the mechanisms

based on their effectiveness at supporting multiple watchpoints. Finally, we perform a sen-

sitivity analysis on the DISE implementation, evaluate the benefit using multithreading to

lower the DISE overhead, and measure the cost of using DISE to protect both debugger

and DISE state stored in the application’s address space.

Simulator. Our general methodology is described in Section 4.2 of Chapter 4. We simu-

late using SimpleScalar Alpha [16], modeling the machine from Table 4.1 on page 54. We

use a 2-stage decoder-based implementation of DISE with a 32-entry pattern table and a

512-entry replacement table (see Chapter 4).

75

function instructions executed IPC store density
bzip2 generateMTFValues 1,828,109,152 2.45 19.8%
crafty InitializeAttackBoards 18,546,482 2.39 10.8%
gcc regclass 18,016,384 1.90 9.68%
mcf write circs 1,847,332 0.33 16.2%
twolf uloop 2,336,334 1.87 13.7%
vortex BMT TraverseSets 205,690,692 2.25 17.6%

Table 5.1: Benchmark summary.

HOT WARM1 WARM2 COLD INDIRECT RANGE
bzip2 24805.7 193.4 ∼0 0 24805.7 193.4
crafty 6531.4 3308.4 6.7 .4 6531.4 72.8
gcc 454.8 223.7 .2 .1 454.8 8197.9
mcf 11229.8 1168.4 215.4 0 11229.8 0
twolf 1467.4 227.5 101.4 80.8 1467.4 250.6
vortex 7290.3 27.6 27.6 ∼0 7290.3 .4

Table 5.2: Watchpoint write frequency (per 100K stores).

Benchmarks and watchpoints. We perform our experiments on the SPEC2000 inte-

ger benchmarks, which we compiled for the Alpha EV6 using GNU gcc 3.2 with the

debugging-appropriate optimization flags-O0 -g (although the topic of debugging opti-

mized code is an interesting one, it is beyond the scope of the present work). For each

benchmark, we used the GNUgprof profiler to identify long-running functions. From this

list of functions, we selected one function per benchmark that is also statically large. For

each benchmark, Table 5.1 gives properties of the functions we use. We simulate each

function in its entirety.

We use a combination of source-code inspection and profiling to select six watch-

points for each benchmark. The first four watchpoints are scalar variables (two heap and

two locals) whose written-to frequency ranges from frequently (HOT) to occasionally

(WARM1/WARM2) to rarely (COLD). The fifth is a dereference (INDIRECT), and the

sixth is a non-scalar, like a structure or an array (RANGE). INDIRECT actually refers to

the same storage as HOT, but through a pointer. The use of multiple watchpoints allows

us to measure debugging overhead under a range of conditions, but they consume pre-

sentation space. To compensate, we show only a representative subset of the SPEC2000

benchmarks. Table 5.2 shows the written-to frequency of each watchpoint, normalized by

76

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

HOT WARM1 WARM2

bzip2 bzip2 bzip2 crafty crafty crafty gcc gcc gcc mcf mcf mcf twolf twolf twolf vortex vortex vortex
0.1

10

1000

1E05

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

COLD INDIRECT RANGE

bzip2 bzip2 bzip2 crafty crafty crafty gcc gcc gcc mcf mcf mcf twolf twolf twolf vortex vortex vortex
0.1

10

1000

1E05

Figure 5.3: Comparison of four unconditional watchpoint implementations.

the total number of stores.

Methodology. Presenting results that can be meaningfully interpreted and easily com-

pared requires that we: (i) simulate the same number of instructions for each experiment,

(ii) factor “user latency” out of our measurements, and (iii) realistically model the cost

of debugger transitions and the debugger itself even though our simulator executes only

user-level code.

We satisfy these requirements by modeling user transitions and their accompanying

debugger transitions (i.e., non-spurious debugger transitions) as having zero cost. We

model the cost of spurious debugger transitions by flushing the pipeline and stalling for

100,000 cycles. This figure is a conservative estimate of the actual cost as measured

in existing debugger implementations. Using the IA-32 cycle-level timer—via therdtsc

instruction—we measure the round-trip debugger transition latency for two debuggers:

GNU’s gdb 5.3.90 under Linux and Microsoft’s Visual Studio 6.0 under Windows XP. On

a 3 GHz Pentium 4, this latency is 290,000 cycles for gdb and 513,000 cycles for Visual

Studio.

5.3.1 Unconditional Watchpoints

Figure 5.3 presents debugging overhead—execution time relative to an undebugged

application—for a single unconditional watchpoint.

77

DISE. The DISE implementation dynamically inserts three or four instructions (depend-

ing on the data sizes of the watchpoint and store instruction) after every store, regardless

of its address. While these increase the dynamic instruction count by as much as a factor

of three, performance overhead rarely exceeds 25%. The added instructions are all ALU

instructions and they do not add to the application’s critical path. Nevertheless, overhead

can be high for frequently written watchpoints (e.g., HOT/bzip2and HOT/vortex), requir-

ing frequent flushing when the expression-evaluation function is called. HOT/mcf is also

frequently updated, but its cost is masked by the memory latency which dominates this

benchmark.

Single stepping.Single-stepping is clearly the worst performing implementation, produc-

ing slowdown factors of 6,000 to 40,000 times in many cases. These figures are consistent

with the observed performance behavior of real debuggers.

Virtual memory. The virtual memory implementation has almost no overhead for

some watchpoints (e.g., COLD/bzip2), but for many others (e.g., COLD/twolf and

COLD/vortex) its overhead can be quite high, sometimes equaling the slowdown of single

stepping (e.g., WARM1/bzip2). This erratic behavior is due to the coarse (page) granu-

larity of the address-matching mechanism and the frequency with which unwatched ad-

dresses that reside on the same page as a watched address are written. If most writes to the

page are to the watched address, perceived overhead is low. Conversely, if a watched ad-

dress shares a page with unwatched, frequently-written addresses, many spurious address

transitions will result and overhead will be high. Certainly, page size can impact the num-

ber of spurious transitions, with smaller pages producing fewer. Our page size is 4KB,

on the small end for real systems. Our experiments (not shown) indicate that reasonable

overhead is achieved for these watchpoints only for impractically small page sizes (e.g.,

128 bytes).

Finally, notice that there is no virtual memory experiment for the INDIRECT watch-

point. The debugger cannot statically determine what pages to write-protect for a watch-

point expression containing pointer dereferences because the value of the pointer may

change during execution. It is possible to watch the pointer itself and dynamically update

the page protection for the datum to which it points (in which case the overhead would be

similar to the HOT case), but we are aware of no debugger that does this.

78

0.0

0.5

1.0

1.5

2.0

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

DISE Binary Rewriting

2.83

bzip2 crafty gcc mcf twolf vortex

Figure 5.4: Comparison to binary rewriting.

Hardware watchpoints. Unlike virtual memory watchpoints, hardware register watch-

points are quad-granularity and only result in spurious address transitions when a partial

quad is watched and a different part of the same quad is written. Unfortunately, hardware

watchpoints are still susceptible to spurious value transitions caused by silent stores. If

these occur with any frequency, performance can be significantly impacted. For example,

in all HOT benchmarks—savebzip2—50% or more of all stores to the watched address

do not change the data value, resulting in significant perceived slowdowns. This is a real-

istic scenario, because silent stores are common [62] and watchpoints are appropriate for

determining exactly where such data are actually changed.

Like virtual memory, there is no hardware register experiment for the INDIRECT

watchpoint, because a debugger cannot statically determine the address to monitor. In con-

trast with virtual memory, there is also no experiment for the large watchpoint RANGE.

Hardware registers are principally used to watch scalars. For non-scalars like structures

and arrays, real debuggers resort to using virtual memory or single-stepping. Some hard-

ware watchpoint register implementations (e.g., IA-64) allow larger segments of memory

to be monitored by masking low-order bits during address comparison, but this may result

in spurious address transitions.

Static transformation. Watchpoints may also be implemented via binary rewrit-

ing [89, 91]. In Section 5.2 we argued that this approach is cumbersome, intrusive, and

dangerous; but it is also inefficient, both in terms of the startup cost to perform the transfor-

mation and the instruction cache cost, which we illustrate here. Figure 5.4 gives the COLD

watchpoint overhead of a binary-rewriting-based watchpoint implementation in which the

79

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

HOT WARM1 WARM2

bzip2 bzip2 bzip2 crafty crafty crafty gcc gcc gcc mcf mcf mcf twolf twolf twolf vortex vortex vortex
0.1

10

1000

1E05

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

COLD INDIRECT RANGE

bzip2 bzip2 bzip2 crafty crafty crafty gcc gcc gcc mcf mcf mcf twolf twolf twolf vortex vortex vortex
0.1

10

1000

1E05

Figure 5.5: Comparison of four conditional watchpoint implementations.

code of Figure 5.1c is statically inlined at every store (i.e., no static optimization is per-

formed). Note that this graph does not include the additional overhead of performing the

static transformation. We examine COLD watchpoints because they represent a common

usage scenario and highlight the difference between DISE and binary rewriting. Both

presented implementations have comparable performance (ignoring static transformation

cost) for benchmarks with small instruction memory footprints (e.g., bzip2, crafty, and

mcf). For larger programs (e.g., gcc, twolf, andvortex) the additional instructions in the

static image degrade instruction cache performance considerably. We exclude figures for

binary-rewriting-based implementations from our other graphs because these results are

governed by code size and instruction cache performance,not watchpoint characteristics.

Summary. For single, unconditional watchpoints, DISE has low overhead, generally 0–

25%. It also significantly outperforms virtual memory on all indirect watchpoints and

direct ones that share pages with unwatched, frequently-written data. It outperforms hard-

ware debugging registers for large and indirect watchpoints and watchpoints with a non-

negligible number of silent stores. It is comparable to a binary rewriting implementation

for codes with small instruction working sets and superior otherwise.

80

5.3.2 Conditional Watchpoints

The performance benefits of DISE are even more pronounced for conditional watchpoints.

Of the four implementations, it is the only one that can avoid spurious predicate transitions

by evaluating conditions in the application itself. Figure 5.5 compares the overheads of the

four implementations on single, conditional watchpoints. Aside from the condition, these

are the same watchpoints used in the previous experiment. To model a realistic condition

which significantly reduces the number of user transitions, our predicate compares the

value of the watched expression to a constant it never matches.

The use of conditionals does not change DISE’s relative advantage over single-

stepping. Conditional or not, single-stepping incurs a debugger transition on (approxi-

mately) every store while DISE incurs transitions only when they lead to user transitions.

DISE’s overhead as compared to that of the virtual-memory and hardware-register im-

plementations depends on the frequency with which the watchpoint address is written.

DISE adds a small fixed amount of overhead per store, regardless of its address. Vir-

tual memory (modulo false address positives) and hardware registers add a much higher

cost, but one that is proportional to the number of writes to the watched address. For

infrequently-written watchpoints (e.g., COLD/bzip2 and COLD/gcc), they trigger few

spurious predicate transitions and slightly outperform DISE. HOT watchpoints and many

WARM watchpoints trigger many spurious predicate transitions, making DISE’s constant

low overhead seem insignificant by comparison.

We can compute the rough store frequency crossover point from the ratio of the cycle

cost of DISE replacement sequence to the cycle cost of a debugger transition. Let us

assume that DISE watchpoints add one cycle per store and that a debugger transition

costs 100,000 cycles. Hardware registers and virtual memory will have lower overheads

on conditional watchpoints whose addresses are written to by fewer than one of every

100,000 stores (less than 1 in Table 5.2). Otherwise, DISE will have the advantage. From

Figure 5.5 it is clear that DISE is always competitive with and usually superior to the

alternative implementations of conditional watchpoints.

81

0

2

4

6
ex

ec
ut

io
n

tim
e

(n
or

m
. t

o
ba

se
lin

e)

Hardware/Virtual Memory Serial-Address-Match (DISE) Bytewise-Bloom (DISE) Bitwise-Bloom (DISE)
73 18

70
9

18
70

8

18
74

7

45 41
27

40
88

42
47

28
43

35
15

5

36
05

3

36
05

7
9.

1

1 2 3 4 5 8 16
crafty

1 2 3 4 5 8 16
gcc

1 2 3 4 5 8 16
vortex

Figure 5.6: Performance impact of the number of watchpoints.

5.3.3 Number of Watchpoints

With respect to performance, DISE faces strong competition in only limited scenarios.

For unconditional scalar watchpoints (admittedly the most common kind) it may be out-

performed, albeit not significantly so, by a hardware register mechanism. However, even

here DISE has an advantage in that it can easily support multiple watchpoints with con-

stant low overhead, while the hardware mechanism is limited by the number of watchpoint

registers.

In Figure 5.6, we vary the number of watchpoints for both DISE and a hardware regis-

ter mechanism. The hardware mechanism uses virtual memory for every watchpoint after

the fourth. For DISE, we examine three replacement sequence implementations.Serial-

Address-Matchmatches each address serially.Bytewise-Bloomhashes store addresses to

bytes in a 2KB array, similar to a Bloom filter [12]; a byte value of 1 indicates a probable

match and triggers a DISE function call; false positives impact performance but not cor-

rectness.Bitwise-Bloomhashes quad addresses to bits, increasing effective array size by a

factor of eight. This results in fewer false positives, but requires two extra bit-manipulation

operations to access the array.

As long as it can use hardware registers and not fall back to virtual memory—i.e., there

are four or fewer watchpoints—a hardware mechanism will often slightly outperform any

DISE implementation. Again, a large number of silent stores on any of the watchpoints

can change this dynamic, as is seen forvortexat four watchpoints. Once virtual memory

must be used, however, a single watchpoint that occupies the same page as unwatched,

frequently-written data will cause spurious address transitions to spike along with over-

head. With multiple watchpoints, the probability that such a watchpoint is included in the

82

set is high. For 5, 8 and 16 watchpoints, all three DISE implementations outperform the

hardware mechanism by at least three orders of magnitude.

Note that our experimental methodology, which discounts user transitions and their

accompanying debugger transitions, results in some anomalous-looking—but not actually

anomalous—virtual memory results. When going from five watchpoints to eight ongcc,

the slowdown drops from 4127 to 4088. One of the three new watchpoints resides on the

same page as the fifth watchpoint. With only five watchpoints, writes to this address trigger

spurious address transitions. When this address is watched, the transitions triggered by its

writes are no longer considered spurious, and they are assigned no cost in our experiment.

Across the DISE implementations, the dominant effect is the efficiency of the replace-

ment sequence. For one or two watchpoints,Serial-Address-Matching—which avoids

costly loads—is the best approach. However, the length of this replacement sequence in-

creases linearly with the number of watchpoints. Despite the fact that it contains a load,

the constant length Bloom filter replacement sequences are more efficient for three or

more watchpoints. The bytewise Bloom filter performs better then the bitwise version in

almost all cases, as the shorter replacement sequence compensates for the cost of a few

additional false positives (each of which incurs two pipeline flushes and the execution of

a short function). The exception isgccwhere the bitwise filter outperforms the bytewise

one for three or more watchpoints. Here false positives dominate. For 16 watchpoints,

the bytewise filter incurs 30,000 false positives (with 40,000 true hits) as compared to 100

false positives for the bitwise filter. The important point is that for a (relatively) large num-

ber of watchpointsanyDISE approach is superior to a hardware-register/virtual-memory

combination. Furthermore, the DISE implementations are much less data dependent (i.e.,

they have goodandpredictable performance).

5.3.4 Implementation Effects

Below we evaluate the performance impact of several variations of the DISE watchpoint

implementation.

Varying ISA support. Our DISE experiments to this point use a replacement sequence

that contains a cheap address check and a conditional DISE call. Here we investigate

83

0.0

0.5

1.0

1.5
ex

ec
ut

io
n

tim
e

(n
or

m
. t

o
ba

se
lin

e)

DISE with Conditional Call/Trap
4.62

HOT WARM1 WARM2 COLD

bzip2 bzip2 bzip2 bzip2 mcf mcf mcf mcf twolf twolf twolf twolf

0

2

4

6

8

10

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

DISE without Conditional Call/Trap

Match-Address/Evaluate-Expression Evaluate-Expression/-- Match-Address-Value/--

HOT WARM1 WARM2 COLD

bzip2 bzip2 bzip2 bzip2 mcf mcf mcf mcf twolf twolf twolf twolf

Figure 5.7: Overhead of various DISE watchpoint implementations.

the impact of the conditional call instruction and the call itself in the context of debug-

ging (note in Chapter 4, we evaluated the impact of the conditional call on store address

tracing).

Figure 5.7 shows the unconditional watchpoint overheads of six different versions of

the DISE replacement sequence/function combination. The six versions are divided into

two groups. In the top group, conditional calls and traps are used to avoid common-case

pipeline flushes. In the bottom group, these instructions are not available and the same

functionality is instead implemented using a combination of conditional branch and un-

conditional call/trap, which elicits flushes in the common case. Within each group, three

alternative implementations are presented.Match-Address/Evaluate-Expressionmatches

addresses in the replacement sequence and calls a function to re-evaluate the expression

on a match (Figures 5.1c and d). This has been our default.Evaluate-Expression/–evalu-

ates the expression in the replacement sequence directly (Figures 5.1a and b), forgoing the

address match and obviating the need for a function call.Match-Address-Value/–matches

the store’s address to the watched address and its value to the previous value of the expres-

sion. This is tantamount to evaluating the expression without the cost of a load if (i) the

watched expression is a scalar, and (ii) the data size of the watched scalar and the store are

84

the same (e.g., both quads or both bytes).

Not surprisingly, the unavailability of conditional calls and traps (bottom graph) results

in considerably higher overhead, regardless of the replacement sequence/function organi-

zation. This result confirms what we saw in Chapter 4 with store address tracing. The

lesson is clear: intra-instruction control transfers (i.e., transfers within the same replace-

ment sequence) should be avoided even at the expense of executing more instructions.

When conditional calls and traps are available (top graph) and the number of pipeline

flushes is kept to a minimum, second order effects can be observed. For instance, with fre-

quent flushing, theEvaluate-Expression/–implementation often has the highest overhead

even though it executes the fewest additional instructions. The key is that one of the added

instructions is a load, and load bandwidth is often highly contended.Match-Address-

Value/–often has the lowest overhead, requiring neither pipeline flushes nor replacement

sequence loads. Unfortunately, this implementation can only be used in select cases.

There are exceptions, however, arising from the trade-off between the cost of a load

and the cost of an address-match-induced function call. For instance, for frequently-

written watchpoints,Evaluate-Expression/–(despite its load) can be more efficient than

Match-Address/Evaluate-Expression. This is the case for HOT/bzip2, which underMatch-

Address/Evaluate-Expressiontriggers a function call on 25% of all stores, resulting in a

slowdown factor of 4.62. For watchpoints written this frequently, direct expression evalu-

ation in the replacement sequence is a better alternative.

Except in extreme cases like the one described above, DISE implementations are not

particularly sensitive to the frequency with which a variable in a watched expression is

updated. Again, DISE is a form of ultra-lightweight single-stepping. Like single-stepping,

it has roughly constant overhead. The difference is that this overhead is quite low. It is

important to note that the overhead of all of these alternatives (even the worst among them)

is orders of magnitude lower than worst-case overhead for each of the other non-DISE

implementations.

Exploiting multithreading. A major component of the overhead of DISE comes from the

pipeline flushes necessary to call and return from a function from within a replacement se-

quence. Figure 5.8 shows the benefit to DISE of the multithreading optimization described

in Section 5.2. Watchpoints with relatively little overhead (e.g., most of the WARM and

85

0

1

2

3

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

Without Multithreading With Multithreading

4.62

bzip2 bzip2 bzip2 bzip2crafty crafty crafty craftygcc gcc gcc gccmcf mcf mcf mcftwolf twolf twolf twolfvortex vortex vortex vortex

HOT WARM1 WARM2 COLD

Figure 5.8: Overhead of multithreaded DISE watchpoints.

COLD ones) benefit very little, because the flushing cost is already a minor performance

factor. The HOT watchpoints that have many address matches (resulting in many function

calls) naturally exhibit a significant reduction in the overall overhead (by nearly a factor

of two for bzip2).

Protecting debugger structures. A virtue of a DISE-based implementation of watch-

points is that debugger logic isdynamicallyembedded into the running program, preserv-

ing the logical separation of the application and debugger. Unfortunately, an errant pro-

gram can still corrupt the debugger data structures (e.g., the Bloom filter). In addition, the

buggy application could corrupt DISE itself, since the specifications are stored in mem-

ory. If we the DISE replacement code or handler routines do not need write access to this

memory, then we can use the virtual memory system to protect it (in which case there is

almost no overhead). If write access to this data is required then we can solve this problem

by modifying our DISE transformation to check the legality of addresses referenced by all

store instructions (as described in Section 5.2). Figure 5.9 plots the overheads of watching

a COLD expression with and without protecting debugger data structures. We evaluate

COLD expressions in order to illustrate the maximum additional cost, for the overhead of

hotter watchpoints would mask the additional address-checking overhead. Nevertheless,

the protection contributes only a modest additional overhead.

5.4 Related Work in Debugging

Several lines of research relate to debugging with DISE.

Embedding debugging logic into the application.The high cost of context switching

86

0.0

0.5

1.0

1.5

2.0

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

Not Protected Protected

bzip2 crafty gcc mcf twolf vortex

Figure 5.9: Performance impact of protecting debugger and DISE state.

that results from keeping the debugger and debugged application in separate processes

has been observed numerous times. Several systems (propose to) move some debugging

logic into the debugged application’s process to reduce the number of context-switches.

In Parasight [6], the debugger shares an address space with a shared-memory parallel ap-

plication. Kessler moves debugger logic into a serial application to reduce the cost of con-

ditional breakpoints [51]. An intended conditional breakpoint is replaced with a jump to a

custom code snippet that evaluates the condition before trapping to the debugger or jump-

ing back to the application’s original control path. Wahbeet al.extend this work to include

watchpoints [89, 91] by replacing stores with calls to an address matching routine. Unlike

Kessler’s system, which uses simple in-place rewriting, Wahbe’s requires—and benefits

from—wholesale re-compilation in order to prune unnecessary calls. Re-compilation cost

is high for large applications, but individual functions may be re-compiled on demand

using just-in-time infrastructures like DELI [33] or Dyninst [15].

Our implementation follows the embedding approach, but has several important advan-

tages. These derive from DISE’s advantages as compared to traditional static rewriting.

First, DISE is much less intrusive than static rewriting. The presence of DISE registers

means that there is no need to scavenge registers from the application, and the fact that

instructions are expanded after fetch means that there is no need to retarget application

branches around inserted code and that inserted code does not reduce effective instruction

cache capacity; rewriting systems that insert code out-of-line using “trampolines” [51]

eliminate the need to retarget branches but still require register scavenging and expand

87

the instruction footprint. Similarly, watchpoints and breakpoints can be enabled and dis-

abled quickly by activating and de-activating the proper DISE transformation specifica-

tions, without modifying the executable. Non-intrusiveness begets safety. Because they

primarily use different register and PC spaces, the application and debugger are less likely

to interfere with each other than they would if combined statically. The DISE mechanism

can also be used to ensure that application stores do not corrupt debugger structures.

Reducing context-switch cost.An alternative to eliminating context-switches is to reduce

their cost. Thekkath and Levy propose hardware modifications that allow traps to vector

directly into user code [86].

Valgrind. Valgrind is a popular tool that has been applied to profiling and debugging

x86 programs [80]. Valgrind is a basic-block interpreter/dynamic compiler with an instru-

mentation interface similar to those supplied by static rewriting packages like Atom [82],

EEL [57], and Etch [73]. Non-interactive (and we suppose interactive) debugging features

can be implemented in Valgrind by registering the appropriate instrumentation functions.

Unlike a conventional interactive debugger, Valgrind forces the user to write debugging

code. Unlike our DISE implementation, its performance is quite poor [97]. Even without

instrumentation it induces slowdown factors of four; basic instrumentation—like instruc-

tion counting—can increase this factor to 25. In addition, the Valgrind runtime system

perturbs much of the processor state, including registers, caches, and hardware perfor-

mance monitors.

iWatcher. iWatcher [97] is a recently-proposed hardware-assisted debugger. There are

two aspects to iWatcher. The first is a programming interface for registering with the pro-

cessor pairs of “interesting” memory regions and fixed-interface callback functions; when

a program writes to (or reads from) a registered memory region, the processor arranges

for the registered function to be called with arguments describing the access supplied by

the hardware. The second is hardware support for efficiently executing this interface, in-

cluding a hierarchal implementation of a memory region tracking table and an adaptation

of thread-level speculation for serializing the function call within the execution of the pro-

gram at low cost (our multithreading technique is a lighter-weight version of this). The

work in this chapter relates primarily to the implementation aspect. Here, while iWatcher

88

relies primarily on “hardware,”i.e., tables and comparators, DISE provides the same sup-

port using what is in effect lightweight software,i.e., injected instructions. We could easily

replace the iWatcher implementation with DISE—(almost) anything one can do in hard-

ware can also be done in software—with comparable performance. The iWatcher imple-

mentation would have a slight performance advantage for infrequently-modified watched

regions as DISE’s instruction overhead (while low) may still be noticeable. For more

frequently-modified watched regions, the DISE implementation would have an advantage

because DISE can prune many spurious value and predicate transitions without making a

function call whereas iWatcher cannot. DISE has the additional advantage of not being

debugging specific.

5.5 Summary

The conventional implementation of debuggers—as processes separate from the debugged

application—makes the implementation of breakpoints and watchpoints costly. The typi-

cal debugging session will contain many expensive application-debugger context switches

that do not ultimately transfer session control to the user but are necessary to evaluate ex-

pressions and predicates in the debugger. These can slow down the application by factors

of 40,000 or more.

In this chapter, we propose avoiding expensive and unnecessary context-switching by

embedding the debugger’s breakpoint, watchpoint, and conditional logic into the appli-

cation itself. Most debuggers avoid this approach because it is practically cumbersome,

has the high initial overhead of analyzing and transforming the application, may introduce

“heisenbugs,” and is potentially unsafe. The novel aspect of our proposal is that we per-

form the embedding without these problems using DISE, which (efficiently) transforms an

application’s dynamic instruction stream rather than its static image. We find that for most

watchpoints and all conditional breakpoints and watchpoints, DISE’s performance advan-

tage is significant. Its slowdown versus undebugged code is usually less than 25% and

is always modest, while that of a conventional debugger can be four orders of magnitude

worse.

89

Chapter 6

Code Compression with DISE

As we have seen in previous chapters, a virtue of DISE transformation is that it does

not bloat the instruction cache or memory. Instructions are macro-expanded after they

are fetched from memory. A natural application of this design is code compression.

Frequently-occurring instruction sequences are stored in DISE replacement sequences and

replaced in the program with compressed codewords. At runtime, DISE macro-expands

(i.e., decompresses) the codewords back to the original sequences.

There are many benefits of code compression. First, code compression reduces the

memory footprint, and in doing so, effectively increases the sizes of memory and the

instruction cache. This is particularly important for embedded devices where cache and

memory size are limited. Second, because processor designers can use smaller memory

structures to achieve the same performance, code compression can also help to reduce

power, a growing concern for both embedded and general-purpose systems. Alternatively,

code compression reduces instruction cache misses, and can be used as a performance

enabler.

This chapter demonstrates a DISE implementation of code compression. We lever-

age an existing technique calleddictionary-based code compression[59]. A static binary

rewriter compresses a program by replacing all frequently-occurring code sequences with

DISE codewords. The original sequences are placed in thedictionary, which with our

DISE-based approach, is a set of replacement sequences. At runtime, DISE expands (i.e.,

decompresses) each fetched codeword into the original instruction sequence. Although

DISE is used only in decompression, we use the terminology DISE-based compression to

90

refer to static compression via a binary rewriter coupled with dynamic decompression via

DISE.

DISE is particularly appropriate for dynamic code decompression because it enables

parameterized compression, an extension to conventional compression that allows multi-

ple, similar-but-not-identical compressed sequences to share dictionary entries, improving

dictionary space utilization. Parameterization also allows PC-relative branches to be in-

cluded in compressed instruction sequences. In addition, DISE’s programmability allows

the dictionary to be customized on a per application basis, further improving compression.

Finally, as a general purpose mechanism, DISE can implement many other features and

even combine them (dynamically) with decompression.

This chapter shows that DISE-based compression enables code size reductions of over

35% and performance improvements of 5–20%. Parameterized decompression—a feature

unique to a DISE implementation of hardware decompression—accounts for a significant

portion of total compression. This chapter also shows that dictionary programmability

is an important consideration for dynamic decompression, as well as how to reduce the

overhead of application-customized dictionaries. Although previous dynamic code de-

compression proposals do not preclude programmability and may even assume it, none

evaluates its importance or provides a mechanism for its implementation (more on other

techniques in Section 6.4). Finally, this chapter shows that DISE-based compression can

reduce total energy consumption by 10% and the energy-delay product by as much as

20%.

This chapter is organized as follows. Section 6.1 gives background on dynamic code

decompression. Section 6.2 presents our implementation of DISE-based compression,

and Section 6.3 evaluates this implementation. Section 6.4 discusses some related work in

code compression.

6.1 Dynamic Code Decompression Background

Dynamic code decompression techniques are characterized bywhenthey perform decom-

pression: between memory (or an L2) and the instruction cache (i.e., fill-path decompres-

sion) or after instructions are fetched in the processor (i.e., post-fetchdecompression).

91

Fill-Path Decompression

Memory
(compressed)

Instruction
cache

(uncompressed)
Fetch Rest of

pipeline

De
co
m
pr
es
si
on

Core processor (unmodified)

(a)

Post-Fetch Decompression

Memory
(compressed)

Instruction
cache

(compressed)
Fetch Rest of

pipeline

De
co
m
pr
es
si
on

Core processor (modified)

(b)

Figure 6.1: Two implementations of dynamic code decompression: (a) fill-path and (b)
post-fetch.

Both approaches are illustrated in Figure 6.1.

Fill-path decompression. Several systems integrate decompression into the instruction

cache fill path [50, 94]. This approach is illustrated in Figure 6.1(a). The advantages

of fill-path decompression are that it allows the use of unmodified cores while incur-

ring the decompression penalty only on instruction cache misses. Because instruction

cache misses are rare for most workloads, longer decompression latencies can be toler-

ated. Therefore, more effective compression algorithms (i.e., Zempel-Liv) with longer

decompression latencies can be used. The disadvantages of fill-path decompression are

that it stores uncompressed code in the instruction cache and requires a mechanism for

translating instruction addresses from the uncompressed image (in the instruction cache

and pipeline) to the compressed one (in memory).

Post-fetch decompression.An alternative approach, shown in Figure 6.1(b), decom-

presses instructions after they are fetched from the cache but before they enter the exe-

cution engine [59]. Post-fetch decompression requires a modified processor core and an

ultra-efficient decompression implementation, because every fetched instruction must at

92

the very least be inspected for possible decompression. However, it allows the instruc-

tion cache to store code in compressed form and eliminates the need for a compressed-

to-decompressed address translation mechanism; only a single static version of the code

exists, the compressed one.

DISE decompression.DISE, which is implemented in the front-end stages of a processor,

is well-suited as a post-fetch decompressor. At runtime, DISE macro-expands compressed

codewords into the original instruction sequence. As shown in Chapter 4, the cost of

macro-expanding (i.e., decompressing) instructions is negligible, a necessary property of

post-fetch decompressors. In the next section, we describe how we achieve decompression

via DISE.

6.2 DISE-Based Code Compression

DISE enables an implementation of dictionary-based post-fetch decompression that is

functionally similar to a previously described scheme [59]. The DISE implementation

is unique among hardware decompression schemes in that it supports parameterized de-

compression, has a programming interface that allows program-specific dictionaries, and

uses hardware that is not decompression-specific. We elaborate on how DISE may be used

to perform dynamic decompression and present our compression algorithm.

6.2.1 Dynamic Decompression

A DISE decompression implementation stores each dictionary entry in a separate DISE

replacement sequence. Decompression is an aware transformation. A DISE-aware com-

pressor replaces frequently-occurring instruction sequences with DISE codewords, which

are recognized by their use of a single reserved opcode. DISE decompression uses explicit

tagging; a single pattern matches all decompression codewords via the reserved opcode,

and the codeword itself encodes the replacement sequence identifier (i.e., tag). This ar-

rangement is basically the same as the one used by a previously described scheme [59].

However, to support parameterized decompression, DISE also uses some non-opcode bits

of a codeword to encode register/immediate parameters.

93

match reserved opcode
(uses explicit tagging)
Sequence 1
(when T.TAG == 0)

Sequence 2
(when T.TAG == 3)

T.OP == res2
=>
0: lda $T.P1,T.P2($T.P1)
 ldq $T.P3,0($T.P1)
 addq $T.P3,$7,$T.P3
3: and $T.P1,T.P2,$T.P1
 cmpeq $T.P3,$T.P1,$6

(a)

res2 3 $4,8,$5 and $4,8,$4
cmpeq $5,$4,$6

(b)

Figure 6.2: DISE specification for decompression: (a) specification and (b) example trans-
formation.

Figure 6.2 shows a decompression specification (a) and an example transformation (b).

The pattern in Figure 6.2(a) matches on the reserved opcoderes2 . A trigger instruction

can expand to one of two possible replacement sequences. Recall from Chapter 3 that

each distinct replacement instruction is annotated with its tag (a number followed “:”). In

Figure 6.2(a) there are two replacement sequences, one starting at index 0 (i.e., T.TAG==0)

and the other starting at index 3 (i.e., T.TAG==3). In Figure 6.2(b) the tag is 3, so the trigger

expands to the second replacement sequence. Notice that both replacement sequences

leverage parameterization (for now ignore the ’$’ that precedes many of the parameter

references).

Figure 6.2(b) also shows the assembly format of a DISE codeword. DISE codewords

use a reserved opcode (e.g., res2). The first operand in a DISE codeword is the tag (e.g., 3),

which immediately follows the reserved opcode. The next operands are a sequence of 2-4

register/immediate parameters separated by commas (we discuss how these are encoded

later, under the heading “Encoding DISE Codewords”). In Figure 6.2(b), the codeword

uses 3 parameters (e.g., $4, 8, $5). To reference a parameter, the replacement sequence

specifiesT.P1 for the first parameter,T.P2 for the second parameter,etc.. In addition, a

’$’ in front of the parameter indicates that the parameter refers to a register rather than an

immediate, which is not always discernable from its use. It is illegal to use a parameter as

both an immediate and a register. In Figure 6.2(b),$T.P1 becomes$4 in the transformed

code,T.P2 becomes8, and$T.P3 becomes$5.

94

Parameterized compression.Register/immediate parameters encoded into compressed

codewords exploit DISE’s parameterized replacement mechanism to allow more sophisti-

cated compression than that supported by dedicated (i.e., dictionary-index only) decom-

pressors. In DISE, a single decompressed code template may yield decompressed se-

quences with different register names or immediate values when instantiated with dif-

ferent “arguments” from different static locations in the compressed code. In this way,

parameterization can be used to make more efficient use of dictionary space.

The use and benefit of parameterized decompression is illustrated in Figure 6.3.

Part (a) shows uncompressed static code; the two boxed three-instruction sequences are

candidates for compression (the algorithm is presented in Section 6.2.2). Part (b) shows

the static code and the dictionary contents for unparameterized compression. Since the

sequences differ slightly, they require separate dictionary entries. With parameterized

decompression, part (c), the two sequences can share a single parameterized dictionary

entry. The entry uses two parameters (shown in bold):P1 parameterizes the first instruc-

tion’s input and output registers (referred to as$T.P1 since it parameterizes a register) and

the second instruction’s input register,P2 parameterizes the first instruction’s immediate

operand. To recover the original uncompressed sequences, the first codeword uses$3 and

8 as values for the two parameters, while the second uses$4 and-8, respectively.

In addition to allowing more concise dictionaries, parameterization permits the com-

pression of sequences containing PC-relative branches. Conventional mechanisms are

incapable of this because compression itself changes PC offsets. Although two static

branches may use the same offset before compression, it is likely this will not be true

after compression. General solution of this conflict is NP-complete [85]. In DISE, post-

compression PC-relative offset changes are no longer a problem. Multiple static branches

that share the same dictionary entry prior to compression can continue to do so afterward.

With parameterization, even branches that use differenta priori offsets can share a dic-

tionary entry. The one restriction to incorporating PC-relative branches into dictionary

entries is that their offsets must fit within the width of a single parameter. This restric-

tion guarantees that no iterative rewriting will be needed, because compression can only

reduce PC-relative offsets. As we show in Section 6.3, the ability to compress PC-relative

95

Uncompressed Code

Static Code

lda $3,8($3)
ldq $5,0($3)
cmplt $5,$1,$6
bne $6,0x1200bd00
lda $4,-8($4)
ldq $5,0($4)
cmplt $5,$1,$6
beq $5,0x1200bd10

Static Code Dictionary
(replacement sequences)

res2 0
bne $6,0x1200bd00
res2 3
beq $5,0x1200bd10

lda $3,8($3)
ldq $5,0($3)
cmplt $5,$1,$6

0

lda $4,-8($4)
ldq $5,0($4)
cmplt $5,$1,$6

3

Static Code Dictionary
(replacement sequences)

res2 0 $3,8
bne $6,0x1200bd00
res2 3 $4,-8
beq $5,0x1200bd10

lda $T.P1,T.P2($T.P1)
ldq $5,0($T.P1)
cmplt $5,$1,$6

0

Unparameterized (De)Compression

Parameterized (De)Compression(a)

(b)

(c)

Figure 6.3: Compression examples.

branches gives a significant benefit, because they represent as much as 20% of all instruc-

tions.

Parameterization is effective because only a few parameters are needed to capture dif-

ferences between similar sequences. This is due to the local nature of register commu-

nication of common programming idioms and the resulting register name repetition. In

Figure 6.3, the three-instruction sequence (lda , ldq , cmplt) increments an array pointer,

loads the value, and compares it to a second value. The 7 register names used within this

sequence represent four distinct values: the array element pointer, the array element value,

the compared value and the comparison result. Given four register parameters, we could

generalize this sequence completely.

96

Opcode P1 P2 P3 Tag

0101115162021252631

Opcode P1 P2 P3 Tag

01115162021252631

P4

12 8 7

Opcode P1 P2 Tag

015162021252631

(a)

(b)

(c)

Opcode P1 P2 Tag

012132021252631

(d)

Figure 6.4: Four DISE codeword encoding formats. The encoding in (a) is our default
format.

Encoding DISE codewords. Figure 6.4 shows four DISE codeword encodings. The

particular format is determined via a DISE register$dcfr (DISE codeword format). It is

read and written using the instructionsd mfdr andd mtdr . Because an individual register

determines the codeword format, two formats cannot be used simultaneously.

The four codewords vary in the size of the tag as well as the number and size of

the parameters. Because the tag is used to index a replacement instruction, the size of

the tag determines the size of the dictionary (i.e., the size of the replacement sequence

space). The implied dictionary sizes of the formats in Figure 6.4 are 2K instructions

(a), 65K instructions (b), 8K instructions (c), and 256 instructions (d). Benchmarks with

larger footprints may require a format with a larger-sized tag since a larger dictionary

naturally improves the compression effectiveness. But at the same time, these formats have

97

Immediate Interpretation

Code

0
1
2
3

Interpretation

Literal
Multiple of 2
Multiple of 4
Multiple of 8

Table 6.1: Interpretations of 5-bit immediate parameters.

less bits for parameterization, which can hurt compression since similar-but-not-identical

sequences may not be able to share the same dictionary entry. We have found that the

encoding in Figure 6.4(a) works well in practice (an 11-bit tag with 3 5-bit parameters),

and we use it exclusively in our evaluation of DISE-based compression.

A careful reader has noticed that there is a potential problem with the encodings in

Figure 6.4. Although the width of the parameter fields is almost always less than or equal

to five bits (except for parameterP2 in Figure 6.4(c), which has eight bits), most imme-

diate fields are wider than five bits. The key here is that in the static uses of a given

decompression entry only a few immediates will be used and this small set can be com-

pactly represented in a small number of bits. Within the directives of each replacement

instruction we specify how the immediate field, if used, should be interpreted. For ex-

ample, we could interpret the bits literally,i.e., interpret00011 as 3. In a 64-bit machine

like Alpha, loads and stores often use immediates that are multiples of 8 (quadword size).

To capture many of these constants, we could define the interpretation of the immediate

to be the 3-bit left-shift of the literal (i.e., multiplied by 8 so that immediates are quad-

aligned). The DISE engine performs this logic when instantiating the immediate field in

the replacement instruction. Figure 6.1 lists the four immediate interpretations we use in

this chapter. Although not shown in Figure 6.1, we also can interpret an immediate as

signed or unsigned.

In addition, notice that the fourth encoding (Figure 6.4(d)) has 2 4-bit parameters

(along with 2 5-bit parameters). Like a 5-bit parameter, a 4-bit parameter can represent

an immediate, although it can capture only half as many immediates. It can also hold a

98

(b)

RA

01214

Directives Layout

10

Last
Flag

RB RC

Immediate

178

OpUnused

1631

Immediate
Interpret.

(a)

Directives Encoding

Opcode

Literal - 0
Parameterized - 1
DISE Opcode - 2

RA/RB/RC

Literal - 0
Parameterized - 1

DISE register - 2

Immediate

Literal - 0
Parameterized - 1

Figure 6.5: Directives: (a) encoding and (b) layout.

register identifier from $0 to $15.

Encoding replacement instructions.The encoding of replacement instructions is nearly

the same as described in Chapter 3 (page 30). For clarity, however, we omitted a few

details in the discussion of directives in Chapter 3 that we discuss here. First, a field in

the replacement instruction (at least a register or an immediate field) can be parameterized

with the P1, P2, P3, or P4 fields of the trigger (i.e., codeword). Recall from Chapter 3

that the directive indicates that the field is parameterized and the type of the parameter

(e.g., P1) is specified in the corresponding field in the template instruction. This field must

be able to also encodeP1-P4 in addition to other types of parameters (e.g., RA). Because

there are less than 16 ways to parameterize any particular replacement instruction field and

because each field in the template instruction has more than 4 bits, this is not a problem.

In addition, one other field is encoded within the directives. Figure 6.5 shows the

99

directives encoding and memory layout. In Figure 6.5, unlike in Figure 3.9 from Chap-

ter 3, we dedicate six bits for the interpretation of the immediates, allowing us to encode

immediates in the compressed codewords using only five bits.

PT and RT. Up to now, our implementation of decompression has been independent of

the implementation of DISE. However, for performance and power reasons, it is important

to consider the DISE implementation when using DISE for decompression. First, consider

performance. As long as the cost of transformation is small, then the overhead of DISE

decompression is negligible (in fact, we show in Section 6.3 that DISE decompression

can actually improve performance). Recall, to reduce the overhead of transformation (i.e.,

macro-expansion), DISE caches frequently-used patterns in a pattern table (PT) and re-

placement sequences in a replacement table (RT). In the absence of PT and RT misses,

the overhead of macro-expansion is small; one additional pipeline stage, which adds a

cycle on every mispredicted branch (a rare event). This overhead increases dramatically

if there are a significant number of PT and RT misses. Servicing each PT/RT miss can

take as much as 30 cycles (more if the specification is not in the data cache). If DISE

decompression results in a significant number of PT or RT misses, then performance will

suffer.

Fortunately, decompression has little impact on PT misses since it requires only a sin-

gle pattern. But it can impact RT misses since it generally uses many replacement instruc-

tions. Depending on the exact implementation, the RT can hold 512 to 2K replacement

instructions. For benchmarks with smaller footprints, which use smaller dictionaries, the

RT size is adequate since the entire dictionary fits into the RT. For larger benchmarks,

the dictionary will not fit into the RT and the result is additional RT misses, which could

significantly degrade performance. If performance is a concern, we can limit the dictio-

nary size to the size of the RT, avoiding costly RT misses at the expense of some loss in

compression. In Section 6.3, we evaluate this tradeoff.

If power is a concern, we also need to consider the implementation of DISE. In this

case, we may want to modify the implementation slightly to help reduce power. In par-

ticular, reducing the sizes of PT and RT entries results in a significant reduction in power

consumption. In Figure 6.5, 16 bits are unused in the directives, allowing us to use a

smaller RT entry (the replacement instructions in memory and in the executable are 8

100

bytes for quad alignment). In addition, if the replacement sequence space is larger than

RT size, then we also have to tag the RT with the upper bits of the replacement sequence

identifier. For a 64K instruction replacement sequence space (i.e., 16-bit identifier) and a

2K instruction RT, the RT tag adds 5 bits to each entry. If saving power is critical, then it

is probably advantageous to make the replacement sequence space equal to the RT size.

This approach limits the size of our dictionary, and hence hurts compression. It also hurts

specification portability, since specifications are designed for a particular RT size, which

may change in the future (and have already changed in the past). But, as we show in

Section 6.3, it can help in reducing power.

6.2.2 Compression Algorithm

Code compression for DISE consists of three steps. First, acompression profileis gathered

from one or more applications. Next, an iterative algorithm uses the compression profile

to build adecompression dictionary(i.e., the set of replacement sequences). Finally, the

static executable is compressed using the dictionary (in reverse) to replace compressible

sequences (i.e., those that match dictionary entries) with appropriate DISE codewords. We

elaborate on each step, below.

Gathering a compression profile. A compression profileis a set of weighted instruc-

tion sequences extracted from one or more applications. The weight of each sequence

represents its static or dynamic frequency. If customized per-program dictionaries are

supported, the compression profile for a given program is mined from its own text. If the

dictionary is fixed (i.e., a single dictionary is used for multiple programs), a profile that

represents multiple applications may be more useful.

A compression profile may contain a redundant and exhaustive representation of in-

struction subsequences in a program. For instance, the sequence<1,2,3,4> may be repre-

sented by up to six sequences in the profile:<1,2>, <2,3>, <3,4>, <1,2,3>, <2,3,4>,

and<1,2,3,4>. This exhaustive representation is not required, but it gives the dictionary

construction algorithm (below) maximum flexibility, improving resultant dictionary qual-

ity. We limit the maximum length of these subsequences to some smallk (the minimum

length of a useful sequence is two instructions), and we do not allow the sequences to

span basic blocks. The latter constraint is shared by all existing post-fetch decompression

101

mechanisms and is necessary for correctness because DISE does not permit control to be

transfered to the middle of a replacement sequence. Both constraints limit the size of com-

pression profiles and instruction sequence lengths, which are naturally not very long (see

Section 6.3).

A weight is associated with each instruction sequence in a profile in order to estimate

the potential benefit of compressing it. We compute the benefit of sequencep via the

formula: benefit(p) = weight(p)× (length(p)− 1). The latter factor represents the number

of instructions eliminated if an instance ofp is compressed to a single codeword. Weight

may be based on a static measure (i.e., the number of times the sequence appears in the

static executable(s)), a dynamic measure (i.e., the number of times the sequence appears

in some dynamic trace or traces), or some combination of the two, allowing the algorithm

to target compression for static code size, reduced fetch consumption—a feature that can

be used to reduce instruction cache energy consumption (see Section 6.3.6)—or both.

For best results, the weights in a profile should match the overlap relationships among

the instruction sequences. In particular, the weight of a sequence should never exceed

the weight associated with one of its proper subsequences, since the appearance of the

subsequence must be at least as frequent as the appearance of the supersequence.

Building the dictionary. A compression/decompression dictionary is built from the in-

struction sequences in a compression profile using the iterative procedure outlined in Fig-

ure 6.6. At each iterative step, the instruction sequence with the greatest estimated com-

pression benefit (minus its cost in terms of space consumed in the dictionary) is identified

and added to the dictionary. In environments where the dictionary is fixed and need not

be encoded into the application binary, we set the cost of all sequences to zero. In this

case, it may be useful to cap the size of the dictionary to prevent it from growing too large.

Otherwise, the iterative process continues until no instruction sequences have a benefit

that exceeds their cost.

When a sequence is added to the dictionary, corrections must be made to the benefits

of all remaining sequences that fully or partially overlap it to account for the fact that

these sequences may no longer be compressed. Since DISE only expands the fetch stream

and does not re-expand the expanded stream, a sequence that contains a decompression

codeword cannot itself be compressed. We recompute the benefit of each sequence (using

102

1 Initialize dictionaryD
2 P ← GenerateCompressionProfile({programs})
3 while ∃p ∈ P s.t. benefit(p) > cost(p)
4 selectp ∈ P with largest benefit(p)−cost(p)
5 P ← P − {p}
6 UpdateDictionary(D, p) { unifyp with existing
7 entries ofD if possible}
8 foreach q ∈ P
9 benefit(q)← RecalculateBenefit(D, q)
10 return D

Figure 6.6: Dictionary construction algorithm.

RecalculateBenefit()) given the sequences that are currently in the dictionary and informa-

tion encoded in the profile.

Benefit correction monotonically reduces the benefit of a sequence, and may drive it

to zero. For example, from our group of six sequences, if sequence<1,2,3> is selected

first, the benefit of the sequence<1,2,3,4> goes to zero. Once<1,2,3> is compressed,

no sequence<1,2,3,4> will remain. If <1,2,3,4> is selected first, the benefit of sequence

<1,2,3> will be reduced, but perhaps not to zero. Once<1,2,3,4> is compressed, in-

stances of<1,2,3> may still be found in other contexts.

Parameterized compression.The dictionary building algorithm is easily extended to sup-

port parameterized compression. At each step, before adding the selected sequence to the

end of the dictionary, we attempt tounify it via parameterization with an existing entry.

Two sequences may be unified if they differ by at mostp distinct register specifiers or

immediate values, wherep is the maximum number of parameter values that can be ac-

commodated within a given instruction (a 32-bit instruction can realistically accommodate

3). For instance, assumingp is 1 (our implementation actually supports 3), the sequence

<addq r2,r2,8; ldq r3,0(r2) > can be unified with the existing sequence<addq r4,r4,8; ldq

r3,0(r4)> by the decompression entry<addq P1,P1,8; ldq r3,0(P1) >. The sequence<addq

r2,r2,16; ldq r3,0(r2) > cannot be unified with the existing sequence using only a single

parameter. We do not attempt opcode parameterization. If unification is possible, the se-

quence is effectively added to the dictionary for free,i.e., without occupying any additional

dictionary space. If unification with multiple entries is possible—a rare occurrence since

103

it implies that two nearly identical entries were not already unified with each other—the

one that necessitates the fewest number of parameters is chosen.

In environments where the dictionary size is capped (i.e., to reduce RT misses), pa-

rameterization allows us to continue to add sequences to the dictionary so long as they can

be unified with existing entries. In other words, the algorithm adds sequences whose cost

exceeds their benefit if they may be unified with existing dictionary entries (i.e., they have

effectively no cost).

Custom, fixed, and hybrid dictionaries.When the compression profile used by this algo-

rithm is derived from a single program, a dictionary will be generated that is customized to

its characteristics, resulting in very effective compression for that program. Unfortunately,

the dictionary itself must be encoded in the program binary, for it should only be used to

decompress that particular program. If a compression profile is derived from a large col-

lection of programs, a dictionary of more general utility is produced, and it may be used

to compress a greater variety of programs. Although the effectiveness of this (fixed) dic-

tionary is likely to be inferior to that of a custom dictionary, the dictionary itself need not

be encoded in the program binary, because the system (e.g., OS or hardware vendor) can

provide this dictionary to be shared by all programs. It may also be valuable to build a

hybrid dictionary that includes fixed and customized components, only the latter of which

needs to be embedded in the program binary. This hybrid dictionary offers the promise of

achieving the best of both customized (good compression of the program itself) and fixed

(little overhead) dictionaries. We evaluate all three approaches in Section 6.3.4.

Rather than compute hybrid custom/fixed dictionaries directly, we combine a custom

and fixed dictionary after they have been produced by the algorithm in Figure 6.6. Assum-

ing a fixed-size dictionary, we allocate a portion of this structure to contain fixed entries

(i.e., entries derived from profiling a large class of applications) and the remainder is

devoted to custom entries (i.e., entries derived from the particular application being com-

pressed). The former will be shared by all compressed programs, so it need not be encoded

in the binary. The latter is unique to each compressed program, so it must be encoded in

the program binary. The fixed and custom portions are computed as described above,

except that dictionary entries appearing in the custom portion that aresubsumedby en-

tries appearing in the fixed portion are removed. One entry subsumes another when both

104

are identical except for fields in the subsuming sequence that are parameterized where

the subsumed sequence was literal. A (perhaps) superior approach would be to detect

and eliminate subsumed entries in the algorithm in Figure 6.6, but we have found the

näıvesolution to be adequate.

Compressing the program.Given a decompression dictionary—a set of decompression

specifications and their replacement sequence identifiers (i.e., tags)—compressing a pro-

gram is straightforward. The executable is statically analyzed and instruction sequences

that match dictionary entries are replaced by the corresponding DISE codewords. The

search-and-replace procedure is performed in dictionary order. In other words, for each

dictionary entry, we scan the entire binary, and compress all instances of that entry before

attempting to compress instances of the next entry. This compression order matches the

order implicitly assumed by our dictionary selection algorithm. When compression is fin-

ished, branch and jump targets—including those in jump tables and PC-relative offsets in

codewords—are recomputed.

Complexity. Dictionary construction dominates the computational complexity of com-

pression. Because sequences are limited to a maximum constant length (k, above), there

areO(n) instruction sequences in the compression profile associated with a program con-

taining (before compression)n instructions. Dictionary construction is quadratic in the

number of sequences in the compression profile, so it is quadratic in the size of the uncom-

pressed program. No effort has been applied to optimizing the complexity or performance

of the compression algorithm. Nevertheless, for most of our benchmarks compression

takes less than 30 seconds on 2 GHz Pentium 4.

6.3 Evaluation of DISE Decompression

DISE is an effective mechanism for implementing dynamic decompression in both gen-

eral purpose and embedded processors. We demonstrate this using custom tools that im-

plement DISE-based compression. Our primary metric iscompression ratio, the ratio

of compressed to uncompressed program sizes. Section 6.3.2 shows the effectiveness of

DISE-based compression versus a dedicated-hardware approach. Section 6.3.3 explores

the sensitivity of compression to factors such as dictionary size and number of available

105

parameters. Section 6.3.4 assesses both program-specific and fixed-dictionary compres-

sion as well as a hybrid of the two. Sections 6.3.5 and 6.3.6 use cycle-level simulation to

evaluate the performance and energy implications of executing compressed code.

The experimental data presented in this section serves three purposes. First, it demon-

strates that DISE-based decompression is effective and evaluates the impact of DISE-

specific features (e.g., the impact of parameters on compression ratio and the impact on

performance of demand loading the decompression dictionary into the RT). Second, it

compares DISE-based decompression with a dedicated-hardware approach. Finally, some

of this data (e.g., impact of dictionary size, impact on energy,etc.) is, in fact, DISE-neutral,

so our results are equally relevant to dedicated-hardware implementations.

6.3.1 Methodology

Simulator. Our general methodology is described in Section 4.2 of Chapter 4. We simu-

late using SimpleScalar Alpha [16], modeling the machine from Table 4.1 on page 54. We

also model an embedded machine. Table 6.2 shows the characteristics of this machine.

Our DISE default configuration uses a 2-stage decoder-based implementation of DISE

with a 32-entry pattern table (although decompression requires only 1 PT entry) and a 2K-

entry, 2-way set associative replacement table (see Chapter 4). Each PT entry occupies 8

bytes while each RT entry occupies 6 bytes so the total sizes of the two structures are 512

bytes and 12KB, respectively. The sizes of both structures are chosen to be as large as

possible without impacting the clock frequency. In some architectures (besides Alpha), a

12KB RT may be too large to access in 1-cycle. For this reason, we also show results for

a 3KB (512-entry) and a .75KB (128-entry) RT.

For the general purpose configuration, we assume a 2-stage decoder, so DISE expan-

sion introduces no overhead. For the embedded configuration, we assume ana priori

1-stage decoder. The DISE interface and its cost do not impact the use of DISE for code

decompression, so they are not explicitly modeled. We model the DISE miss handler by

flushing the pipeline and stalling for 30 cycles.

The simulator models power consumption using the Wattch framework [13], a widely-

used research tool for architecture power analysis, and CACTI-3 [92], a cache area, ac-

cess and cycle time and power consumption estimation tool. Our power estimates are

106

Machine MIPS-like, in-order

ISA Alpha
Processor width 2
Pipeline stages 5
Reorder buffer size 128
Reservation stations 80
Instruction cache 8KB, 2-way

set associative,
1-cycle access time

Instruction TLB none

Data cache 16KB, 2-way
set associative,
1-cycle access time

Data TLB none

Unified L2 cache none

Main memory infinite, 50 cycle
access time

Memory bus 32 bytes wide,
1/4 processor
frequency

Branch predictor Hybrid bimodal/gshare,
1K entry

Branch target buffer 128 entry

Table 6.2: Default embedded machine characteristics.

for 0.13µm technology. The structures were configured carefully to minimize power

consumption and roughly mirror the per-structure power distributions of actual proces-

sors. For a given logical configuration, CACTI-3 employs both squarification and hori-

zontal/vertical sub-banking to minimize some combination of delay, power consumption

and area. We configure both the instruction cache and RT as two-way interleaved, single-

ported (read/write) structures that are accessed at most once per cycle.

Benchmarks. We perform our experiments on the SPEC2000 integer and Media-

Bench [58] benchmarks. The SPEC benchmarks run on the general purpose processor

configuration, while the MediaBench codes run on the embedded configuration. All pro-

grams are compiled for the Alpha EV6 architecture with the native Digital Unix C com-

piler with optimization flags-O4 -fast. When execution times are reported for SPEC,

107

SPEC

benchmark code size IPC I$
(insn) misses

bzip2 36,013 2.46 ∼0%
crafty 82,863 2.08 .51%
eon 150,998 2.13 .64%
gap 172,581 1.70 .58%
gcc 364,429 1.53 1.25%
gzip 38,871 2.15 ∼0%
mcf 32,018 0.45 .01%
parser 57,617 1.51 ∼0%
perlbmk 173,135 1.55 1.1%
twolf 88,324 1.60 .11%
vortex 162,613 2.30 .75%
vpr 70,735 1.24 ∼0%

(a)

MediaBench

benchmark code size IPC I$
(insn) misses

adpcm.caudio 26,189 0.98 ∼0%
epic.epic 45,211 1.33 ∼0%
epic.unepic 34,190 1.15 .02%
g721.dec 23,875 1.19 ∼0%
ghostscr.gs 329,371 0.99 1.47%
gsm.toast 38,810 1.60 .14%
jpeg.cjpeg 48,733 1.02 .03%
jpeg.djpeg 52,484 1.06 .09%
mesa.mip 189,309 1.23 ∼0%
mpeg2.dec 59,416 1.16 .03%
mpeg2.enc 47,087 1.37 ∼0%
pegwit.enc 43,961 0.94 .01%

(b)

Table 6.3: Benchmark summary for (a) SPEC Int 2000 and (b) MediaBench.

they come from complete runs sampled at 10% (100M instructions per sample) using the

train input. MediaBench results are for complete runs using the inputs provided [58]; no

sampling is used. Table 6.3 lists some characteristics of the benchmarks that are useful

in interpreting the results below. Note the instruction cache misses are normalized to the

total number of executed instructions.

Dictionaries. Compression profiles are constructed by static binary analysis (except in

Section 6.3.6). The compression tool generates a set of decompression specifications (the

dictionary) via the algorithm presented in Section 6.2. Our default compression param-

eters are a maximum dictionary entry length of 8 instructions and no more than 3 regis-

ter/immediate parameters per entry. Except for the experiments in Section 6.3.4, a custom

dictionary is used for each benchmark. Except for the experiment in Section 6.3.6, each

dictionary is constructed using a compression profile where weights encode static instruc-

tion sequence frequency.

108

0.6

0.7

0.8

0.9

1.0

1.1

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

 1
50

9
/ 1

.3

 3
79

8
/ 1

.2

 6
17

5
/ 1

.5

 7
23

8
/ 1

.2

 1
48

78
 /

1.
1

 1
67

2
/ 1

.3

 1
37

7
/ 1

.3

 2
60

7
/ 1

.2

 7
23

6
/ 1

.2

 4
36

2
/ 1

.2

 5
73

2
/ 1

.2

 3
34

3
/ 1

.3 6
79

 /
2.

5

 1
52

7
/ 2

.3

 3
53

1
/ 2

.7

 3
50

4
/ 2

.3

 5
91

9
/ 2

.3

 7
02

 /
2.

4

 6
10

 /
2.

4

 1
20

7
/ 2

.4

 2
95

9
/ 2

.3

 1
64

4
/ 2

.4

 3
25

0
/ 2

.4

 1
40

3
/ 2

.5

 3
23

 /
3

 7
39

 /
2.

8

 2
17

8
/ 3

.3

 1
81

1
/ 2

.7

 3
02

3
/ 2

.6

 3
23

 /
2.

9

 2
86

 /
3

 6
15

 /
2.

8

 1
48

6
/ 2

.7

 7
63

 /
2.

9

 1
79

9
/ 2

.9

 6
73

 /
3.

1

 8
9

/ 2
.6

 2
26

 /
2.

5

 9
21

 /
3.

3

 6
23

 /
2.

5

 1
17

1
/ 2

.4

 8
7

/ 2
.4

 8
3

/ 2
.6

 1
85

 /
2.

5

 5
49

 /
2.

5

 2
16

 /
2.

6

 7
67

 /
2.

7

 1
82

 /
2.

7

 3
25

 /
2.

4

 8
35

 /
2.

3

 1
38

7
/ 2

.6

 1
74

7
/ 2

.3

 2
04

8
/ 2

.2

 3
44

 /
2.

3

 3
09

 /
2.

5

 5
69

 /
2.

4

 1
53

1
/ 2

.3

 9
88

 /
2.

4

 1
23

5
/ 2

.3

 7
21

 /
2.

3

 3
98

 /
2.

3

 9
44

 /
2.

3

 1
46

4
/ 2

.6

 1
73

7
/ 2

.3

 2
04

8
/ 2

.2

 4
31

 /
2.

3

 3
94

 /
2.

4

 6
27

 /
2.

4

 1
56

4
/ 2

.3

 1
08

8
/ 2

.3

 1
25

9
/ 2

.3

 8
25

 /
2.

3

0.6

0.7

0.8

0.9

1.0

1.1

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

dictionarydedicated -1insn -2byteCW +8byteDE +3param DISE

adpcm.caudio epic.epic epic.unepic g721.dec ghostscr.gs gsm.toast jpeg.cjpeg jpeg.djpeg mesa.mip mpeg2.dec mpeg2.enc pegwit.enc

 1
08

1
 /

1.
3

 2
06

6
 /

1.
3

 1
57

6
 /

1.
3

 1
01

6
 /

1.
4

 1
42

49
 /

 1
.2

 1
65

0
 /

1.
3

 2
12

8
 /

1.
3

 2
31

3
 /

1.
3

 8
70

6
 /

1.
3

 2
09

3
 /

1.
3

 2
91

4
 /

1.
3

 1
68

0
/ 1

.5

 4
95

 /
 2

.4

 9
29

 /
 2

.4

 7
34

 /
 2

.4

 5
12

 /
 2

.5

 5
81

1
 /

2.
4

 7
83

 /
 2

.4

 1
07

1
 /

2.
4

 1
13

4
 /

2.
3

 4
00

6
 /

2.
5

 9
45

 /
 2

.4

 1
27

1
 /

2.
4

 8
53

 /
 2

.7

 2
30

 /
 3

 4
35

 /
 3

 3
53

 /
 3

 2
41

 /
 3

 2
84

4
 /

2.
8

 3
72

 /
 2

.8

 5
11

 /
 2

.8

 5
40

 /
 2

.8

 2
07

8
 /

3

 4
36

 /
 3

 6
16

 /
 3

 4
51

 /
 3

.4

 5
8

 /
2.

5

 1
34

 /
 2

.7

 1
04

 /
 2

.7

 5
5

 /
2.

7

 9
35

 /
 2

.6

 1
01

 /
 2

.4

 1
60

 /
 2

.6

 1
91

 /
 2

.4

 6
75

 /
 2

.8

 1
15

 /
 2

.6

 1
68

 /
 2

.7

 8
9

 /
2.

4

 2
39

 /
 2

.4

 4
27

 /
 2

.5

 3
42

 /
 2

.5

 2
31

 /
 2

.6

 2
04

8
 /

2.
3

 3
74

 /
 2

.4

 4
74

 /
 2

.4

 5
46

 /
 2

.4

 2
04

8
 /

2.
4

 4
32

 /
 2

.4

 6
04

 /
 2

.5

 3
82

 /
 2

.4

 3
05

 /
 2

.3

 5
25

 /
 2

.4

 4
29

 /
 2

.5

 2
95

 /
 2

.5

 2
04

8
 /

2.
3

 4
40

 /
 2

.4

 5
42

 /
 2

.4

 6
05

 /
 2

.4

 2
04

8
 /

2.
4

 5
22

 /
 2

.4

 6
88

 /
 2

.4

 4
63

 /
 2

.4

Figure 6.7: Dedicated and DISE-based feature impact on compression.

6.3.2 Compression Effectiveness

We begin with a comparison of the compression efficacy of DISE to that of a previously

proposed system that exploits dedicated decompression-specific hardware [59]. The ded-

icated approach does not support parameterized replacement. As a result, it cannot com-

press PC-relative branches or share dictionary entries in certain situations, but it does have

smaller dictionary entries (no directives) and smaller codewords (no parameters), and so

it can profitably compress single instruction sequences.

We separate the impact of these differences in Figure 6.7. Bars represent static com-

pression ratio broken down into two components. The first (bottom, shaded portion of

each stack) is the (normalized) compressed size of the original program text. The second

(top white portion) is the size of the dictionary as a fraction of original program text size.

The combination of these two bars represents the total amount of data required to represent

a compressed program. The two numbers written on top of each bar are the total number

of dictionary entries, and the average number of instructions per entry, respectively. Each

bar gives the compression of a decompressor with a slightly different feature set.

Dedicated decompression features.The first bar (dedicated) corresponds to a dedicated

109

hardware decompressor, complete with 2-byte codewords and single-instruction compres-

sion [59]. The compression ratios achieved—about 70–75% of original text size, dic-

tionary not included (note the scale of the graph)—are comparable to those previously

published [59]. In the next two bars, we progressively eliminate the dedicated decom-

pressor’s two advantages: single-instruction compression (-1insn) and the use of 2-byte

codewords (-2byteCW). Eliminating these features reduces compression effectiveness to

approximately 85%.

DISE decompression features. With dedicated-decompression-specific features re-

moved, the next three bars add DISE-specific features. The use of parameterized replace-

ment requires four additional bytes per dictionary entry to hold the instantiation directives

(+8byteDE). Without parameterization, larger dictionary entries require more static in-

stances to be considered profitable. As a result, fewer of them are selected and compres-

sion ratios degrade to 90% and above. Shown in the fifth bar, parameterization (+3param,

we allow three parameters per dictionary entry) more than compensates for the increased

cost of each dictionary entry by allowing sequences with small differences to share en-

tries; it improves compression ratios dramatically (back down to 75–80%). The final bar

(DISE)—corresponding to the full-featured DISE implementation—adds the compression

of PC-relative branches. The high static frequency of PC-relative branches enables com-

pression ratios of 65%, appreciably better than those achieved with the dedicated hardware

scheme.

The numbers on top of the bars—number of dictionary entries and average number of

instructions per entry—point to interesting differences in dictionary-space usage between

the dedicated and DISE schemes. While the two schemes use roughly the same amount of

total dictionary storage (see the portion of each bar), recall that DISE requires twice the

storage per instruction, meaning the DISE dictionaries contain roughly half the number

of instructions as the dedicated ones. Beyond that, dedicated dictionaries typically con-

sist of a large number of small entries, including many single-instruction entries. DISE

dictionaries typically consist of a smaller number of longer entries. The difference is due

to the absence of single-instruction compression—which means that the average com-

pression sequence length must be at least two—and the use of 4-byte codewords which

require longer compressed sequences to be profitable. Parameterized replacement does

110

not increase the average entry size, it just makes more entries profitable since they can be

shared among more static locations.

Notice, the total number of dictionary entries for the DISE schemes cannot exceed 2K,

since parameterized DISE codewords contain only 11 bits for the tag (i.e., replacement

sequence).

6.3.3 Sensitivity Analysis

The results of the previous section demonstrate that unconstrained decompression is effec-

tive. Below, we investigate the impact of dictionary entry size (in terms of instructions),

total dictionary size, and the number of register/immediate parameters per dictionary en-

try.

Dictionary entry size. Post-fetch decompression restricts compressed sequences to re-

side fully within basic blocks. Although basic block size is small in the benchmarks

we consider, there may be benefit to restricting dictionary entry size even beyond this

natural limit. Small sequences may admit more efficient RT organizations and tagging

schemes and can reduce the running time of the compressor itself. Our experiments (not

graphed here) show that 4-instruction sequences allow better compression (up to 8%) than

2-instruction sequences, 8-instruction sequences occasionally result in slightly better com-

pression still, and 16-instruction sequences offer virtually no advantage over those. Our

algorithm simply never selects long instruction sequences for compression because similar

long sequences do not appear frequently in the codes we studied.

Dictionary size. Although DISE virtualization allows the dictionary to be larger than the

physical RT, a dictionary whose working set exceeds RT capacity will degrade perfor-

mance via expensive RT miss handling. To avoid RT misses, it is often useful to limit the

size of the dictionary, but this naturally degrades compression effectiveness. Figure 6.8

shows the impact of dictionary size on compression ratio. Note, we define dictionary size

as the total number of instructions,not the number of entries (i.e., instruction sequences).

Non-trivial compression, reductions of 1–5% in code size are possible with dictionar-

ies as small as 8 total instructions, and 12% reductions are possible with 32-instruction

dictionaries (e.g., vortex). 512-instruction dictionaries achieve excellent compression,

111

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

crafty eon gap parser perlbmk twolf vortex

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

dictionary8 32 128 512 2K 8K unbounded

g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

Figure 6.8: Impact of dictionary size on compression.

70–80% of original program code size on all programs. Increasing dictionary size to

2K instructions yields small benefits. Only the larger benchmarks (i.e., eon, perlbmk,

andghostscript) reap additional benefit from an 8K instruction dictionary. The remaining

benchmarks are unable to exploit the additional capacity.

Number of parameters. Parameterized decompression allows for smaller, more effec-

tive dictionaries, because similar-but-not-identical sequences can share a single dictionary

entry as in Figure 6.3. This is a feature unique to DISE among hardware decompression

schemes; Figure 6.9 shows its impact.

Compression ratios improve steadily as the number of parameters is increased from

zero to three; the difference between zero and three parameters is about 15% in absolute

terms. Compression improves even further if more than three parameters are used, but

there is little benefit to allowing more than six parameters (assuming we could encode

six parameters in a single codeword). This diminishing return follows directly from our

dictionary entry size results. Each instruction contains no more than three registers (or

two registers and one immediate). Since most dictionary entries are 2–4 instructions long,

they cannot possibly contain more than 12 distinct register names or immediate values. Of

course, in practice the number of distinct names is much smaller. Contiguous instructions

tend to be data-dependent and these dependences are expressed by shared register names.

112

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

crafty eon gap parser perlbmk twolf vortex

0.5

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

dictionary 0 1 2 3 6 unbounded 6+6byteCW

g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

Figure 6.9: Impact of parameters on compression.

Parameterized replacement therefore has the nice property that a few parameters capture

a significant portion of the benefit. The final bar (6+6byteCW) repeats the 6-parameter

experiment, but uses longer—6 rather than 4 byte—codewords to realistically represent

the overhead of encoding additional parameters. The use of longer codewords makes the

compression of shorter sequences less profitable, completely overwhelming the benefit

achieved by the additional three parameters. Three parameters—the maximum number

that can fit within a 32-bit codeword and still maintain a reasonably sized replacement

sequence identifier—yields the best compression ratios.

6.3.4 Dictionary Programmability

One advantage of DISE-based compression is dictionary programmability, the ability to

use a per-application dictionary. Although previous proposals for post-fetch decompres-

sion [59] did not explicitly preclude programmability, a programming mechanism was

never proposed and the impact of programmability was never evaluated. In DISE, dy-

namic dictionary manipulation is possible via the controller.

Custom versus fixed dictionaries.We consider the impact of programmability by com-

paring three compression usage scenarios. Inapplicationwe create a custom dictionary

113

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

crafty eon gap parser perlbmk twolf vortex
512 512 512 512 512 512 5122K 2K 2K 2K 2K 2K 2K

0.6

0.7

0.8

0.9

1.0
co

de
 s

iz
e

(n
or

m
. t

o
ba

se
lin

e)

MediaBench

custom dictionaryapplication fixed dictionarysuite other-suite

g721.dec ghostscript.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc
512 512 512 512 512 512 5122K 2K 2K 2K 2K 2K 2K

Figure 6.10: Impact of dictionary customization on compression.

for each application and encode it into the executable. All the data presented thus far as-

sumes this scenario. The other two scenarios assume a fixed, system-supplied dictionary,

that either resides in kernel memory or is perhaps hardwired into the RT. In these scenar-

ios, the system provides the compression utility. The first of these,suite, models a system

with a limited but well-understood application domain. Here, we build a dictionary using

static profile data collected from the other applications in the benchmark suite. The sec-

ond (other-suite) models a system with little or noa priori knowledge of the application

domain. Here, dictionaries are built using profile data from programs in the other bench-

mark suite. One advantage of system-provided (i.e., fixed) dictionaries is that they do not

consume space in the compressed application’s executable.

Figure 6.10 shows the impact of each usage scenario on compression ratio. We ac-

tually show the results of two experiments, limiting dictionary size to 512 and 2K total

instructions. Not surprisingly, at small dictionary sizes, an application-specific dictionary

(application) out-compresses a fixed dictionary (suiteandother-suite), even when consid-

ering that dictionary space is part of the compressed executable in this scenario and not

the other two scenarios. Being restricted to relatively few compression sequences while

limiting the overall cost of the dictionary to the application places a premium on careful

selection and gives theapplicationscenario an advantage. As dictionary size is increased,

114

however, careful selection of sequences becomes less important while the fact that entries

in fixed dictionaries are “free” to the application increases in importance. With a 2K in-

struction dictionary, “inversions” in which an application-agnostic dictionary outperforms

the application-specific one are observed (e.g., g721, gsm, pegwit). Of course, these are

achieved using very large fixed dictionaries which would not be used if the application

were forced to include the dictionary in its own binary.

The suitescenario often out-compressesother-suite, implying that there is idiomatic

similarity within a particular application domain. For instance, a few of the MediaBench

programs have many floating-point operations whose compression idioms will not be gen-

erated by the integer SPEC benchmark suite. The one exception to this rule isghostscript,

which arguably looks more like an integer program—it’s call-intensive in addition to loop-

intensive—than an embedded media program.

Hybrid custom/fixed dictionaries. From the data in Figure 6.10, it is apparent that there

are unique virtues to both customized (application) and fixed (suiteandother-suite) ap-

proaches to building and using dictionaries. Customized dictionaries allow for the best

compression of the program, but the dictionary itself must be encoded in the program bi-

nary, sometimes negating the benefit of customization (e.g., g721.dec). Fixed dictionaries

have the benefit that they need not be represented in the program binary, but they usually

result in poorer compression of the program itself (although this is not always true for rea-

sons described above). Ahybrid approach for dictionary construction attempts to achieve

the best of both worlds.

Figure 6.11 presents the impact of hybridization. We partition both 512 and 2K entry

RTs (the RT must houseboththe custom and fixed part of the dictionary) in six incremen-

tally different ways. The percent under each bar indicates the portion of the total dictionary

devoted to custom entries. 100% is completely custom and 0% is entirely fixed. The white

(top) portion of each bar represents the custom portion of the dictionary that must be en-

coded in the binary. So that all benchmarks share exactly the same fixed portion, our fixed

entries are derived from all of the benchmarks within each benchmark suite (including the

benchmark being compressed). As a result, the 0% figures differ slightly from thesuite

bars (which exclude the benchmark being compressed) in Figure 6.10.

Ignoring custom dictionary overhead for the moment (top white portion of each bar),

115

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0% 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0% 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

SPEC

512 512 512 512 512 512 5122K 2K 2K 2K 2K 2K 2K
crafty eon gap parser perlbmk twolf vortex

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0% 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 8
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 6
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 4
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0%

 2
0% 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

 0
%

0.6

0.7

0.8

0.9

1.0

co
de

 s
iz

e
(n

or
m

. t
o

ba
se

lin
e)

MediaBench

code custom dictionary

512 512 512 512 512 512 5122K 2K 2K 2K 2K 2K 2K
g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

Figure 6.11: Impact of hybrid custom/fixed dictionary on compression.

each set of bars exhibits one of three basic shapes: (1) compression ratio (gray bar only)

increases as less of the dictionary is dedicated to custom entries, (2) compression ratio de-

creases, or (3) compression ratio decreases, then increases. The first case (e.g., crafty, 2K-

entry RT) is most natural and common. As the total dictionary becomes less customized

to the application being compressed, the compression ratio will naturally get worse (i.e.,

increase). We see this in almost all SPEC benchmarks and most of the MediaBench codes

with small (i.e., 512-entry) RTs.

The second case (compression ratio actually improves when more of the dictionary

is devoted to fixed entries) is, at first, unintuitive. The origin of this odd occurrence is

that an entry is only added to the custom dictionary if the compression benefit (in the

program) exceeds the cost of adding the entry to the dictionary. As a result, it is often the

case (particularly for large RTs) that the custom portion of the dictionary is not full, and

converting custom entries to fixed entries does not in fact reduce the number of custom

entries but it does increase the number of fixed entries. The end result is that there are

actually more total entries in the dictionary resulting in better compression. This most

naturally occurs for small programs and large dictionaries, so we see it for a number of

MediaBench codes with 2K RTs.

116

The third case (compression ratio improves, then degrades,e.g., g721.dec/2K) is the

natural combination of the first two cases. The ratio improves at first because fixed-

dictionary entries are being added without impacting the custom entries, but at some point,

the fixed dictionary cuts into valuable custom entries, degrading compression ratios.

Now we consider the overhead of the custom dictionary (top white portion of each

bar). Naturally, this decreases as more of the dictionary is devoted to fixed entries. In

some cases, the reduced custom dictionary overhead is overshadowed by the degraded

compression of the binary (e.g., ghostscript.gs, 512-entry RT), but most codes actually

benefit from dedicating at least some of the dictionary to fixed entries.Crafty/2K is a nice

example; it achieves the best total compression when only 20% of the dictionary is cus-

tomized. Most of the codes exhibit a similar valley around 20% or 40%. Although some-

times the best compression is achieved with a completely fixed dictionary (e.g., g721.dec),

there is usually a significant jump from the 20% bar to the 0% bar, suggesting that some

amount of customization is useful.

6.3.5 Performance Impact

The performance of a system that uses DISE decompression depends on the average access

times of two caches: the instruction cache and the RT, which acts as a cache for the

dictionary. Since each is accessed in an in-order front-end stage, penalties are taken in

series and translate directly into end latency.

The next two sections of the evaluation focus on performance and energy, variations

in which are due to trade-offs between the instruction cache and RT.

Instruction cache performance. Figure 6.12 isolates instruction cache performance by

simulating an ideal DISE engine, an infinite RT with no penalty per expansion. The fig-

ure shows the relative performance of fifteen instruction-cache/dictionary configurations:

each of three cache sizes used in conjunction with each of five dictionary sizes—0 (no de-

compression), 128 entries, 512, 2K, and an unbounded dictionary. We show performance

(IPC; higher bars are better) normalized to that of a configuration with a 32KB instruction

cache and no decompression. Performance, naturally, decreases with cache size, in some

cases significantly (e.g., craftysuffers five times the number of misses with a 16KB cache

versus a 32KB cache). Of the three components of average access time—hit time, miss

117

32
K

32
K

32
K

32
K

32
K

32
K

32
K

16
K

16
K

16
K

16
K

16
K

16
K

16
K8K 8K 8K 8K 8K 8K 8K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

 (n
or

m
. t

o
32

K
 u

nc
om

pr
es

se
d) SPEC

crafty eon gap parser perlbmk twolf vortex

16
K

16
K

16
K

16
K

16
K

16
K

16
K8K 8K 8K 8K 8K 8K 8K4K 4K 4K 4K 4K 4K 4K

0.0

0.2

0.4

0.6

0.8

1.0

1.2
IP

C
 (n

or
m

. t
o

16
K

 u
nc

om
pr

es
se

d) MediaBench

unbounded20485121280

g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

1.
96

1.
55

dictionary size:

Figure 6.12: Performance impact of instruction cache and dictionary.

rate, and miss penalty—only the miss rate is impacted by DISE; we fix the miss penalty

and ignore the possibility that smaller caches could be accessed in fewer pipeline stages.

While larger dictionaries can improve static compression ratios, small ones suffice

from a performance standpoint. For many programs, much of the static text compressed

by larger dictionaries is not part of the dynamic working set, and its compression does

not influence effective cache capacity. About half of the programs (e.g., gap, parser, and

perlbmk) benefit little from dictionaries larger than 128 total instructions, and onlycrafty

andvortexshow significant improvement when dictionary size is increased beyond 2K

instructions.

Counter-intuitively, compression may hurt cache performance by producing patholog-

ical cache conflicts that did not exist in uncompressed (or less aggressively compressed)

code. This effect is more likely to occur at small cache sizes. A prime example is

ghostscript. Although not immediately evident from the figure, on the 8KB and 4KB

caches, the 512 instruction dictionary actually underperforms the 128 instruction dictio-

nary. The pathological conflict—actually there are two clustered groups of conflicts each

involving 4–5 sets—disappears when the larger, 2K instruction dictionary is used. We

have verified that this artifact disappears at higher associativities (e.g., 8-way). The same

effect occurs, but to a far lesser degree, ingapandtwolf. The presence of such artifacts

118

argues for the utility of programmable compression.

DISE engine performance. In contrast with the preceding, here we are concerned with

all aspects of RT performance. As discussed in Chapter 4, RT hit time is determined by the

DISE engine pipeline organization. We add an additional stage to the decoder (which was

originally a 1-stage decoder), which results in a one-cycle penalty on every mispredicted

branch. Because mispredicted branches are uncommon, the cost is quite small (e.g., 0.5–

1%).

The other components of RT access time are miss rate and the cost of servicing a miss.

The miss rate was also briefly evaluated in Chapter 4, but here we re-evaluate it in more

detail. The RT miss rate is a function of virtual dictionary working set size and the physical

RT configuration, primarily the capacity. RT misses are quite expensive. We model the

RT miss penalty by flushing the pipeline and stalling for 30 cycles. Figure 6.13 shows

the performance (i.e., IPC) of systems with several virtual dictionary sizes (128, 512,

2K instructions) on RTs of several different configurations (128, 512, and 2K instruction

specification slots arranged in four instruction blocks, both direct mapped and 2-way set-

associative). Performance is normalized to the “large instruction cache” (32K or 16K)

DISE-free configuration, while the DISE experiments all use smaller caches. For this

reason, slowdowns—normalized performance of less than 1—are sometimes observed,

especially for the small physical RT configurations. Since the RT miss penalty is fixed,

performance differences are a strict function of the RT miss rate.

As the figure shows, a large virtual dictionary on a small physical RT produces an

abundance of expensive RT misses which cause frequent execution serializations. A 2K-

instruction dictionary executing on a 128 entry RT can degrade performance by a factor of

5 to 10 (e.g., vortex). Although RT virtualization guarantees correct execution, to preserve

performance, dictionaries should not exceed the physical size of the RT. The instruction

conflict pathology described in the previous section is again evident intwolf. On a 2K-

instruction RT, the 512-instruction dictionary outperforms the 2K-instruction dictionary,

even though neither generates RT misses.

The MediaBench programs typically require smaller dictionaries and are more loop

oriented than their SPEC counterparts. 2K-instruction dictionaries are rare even when no

limit is placed on dictionary size, and dictionaries tend to exhibit better RT locality. As a

119

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IP
C

 (n
or

m
. t

o
un

co
m

pr
es

se
d/

32
K

 $
) SPEC

crafty eon gap parser perlbmk twolf vortex

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

D
M

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

12
8/

2S
A

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

D
M

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

51
2/

2S
A

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/D

M

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

2K
/2

SA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
IP

C
 (n

or
m

. t
o

un
co

m
pr

es
se

d/
32

K
 $

) MediaBench

128 512 2K
g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc
dictionary size:

Figure 6.13: Performance impact of RT misses.

result, larger dictionaries perform relatively better on small RTs than they do in SPEC.

6.3.6 Energy Implications

In a typical general purpose processor, instruction cache access accounts for as much as

20% of total processor energy consumption. Other structures, like the data cache and L2

cache, may be as large or larger than the instruction cache, but are accessed less frequently

(the instruction cache is accessed nearly every cycle) and typically one bank at a time

(all instruction-cache banks are accessed on each cache access cycle). In an embedded

processor, which may contain neither an L2 nor a complex execution engine, this ratio

may be even higher.

Post-fetch decompression can be used to reduce energy consumption, both in the in-

struction cache and in total. Energy reduction can come from two sources: (i) reduced ex-

ecution times due to compressed instruction footprints and fewer instruction cache misses,

and/or (ii) the use of smaller, lower-power caches. However, there are two complementary

sources of energy consumption increase. First, the DISE structures themselves consume

energy. Second, the use of a smaller instruction cache may decrease effective instruction

capacity beyond compression’s ability to compensate for it, increasing instruction cache

120

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.6

0.8

1.0

1.2

1.4

en
er

gy
 (n

or
m

. t
o

un
co

m
p.

/3
2K

B
) SPEC

32KB 32KB 32KB 32KB 32KB 32KB 32KB16KB 16KB 16KB 16KB 16KB 16KB 16KB
crafty eon gap parser perlbmk twolf vortex

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.4

0.6

0.8

1.0

1.2

1.4

1.6

en
er

gy
 (n

or
m

. t
o

un
co

m
p.

/1
6K

B
) MediaBench

RT i$ other energy-delay product

16KB 16KB 16KB 16KB 16KB 16KB 16KB8KB 8KB 8KB 8KB 8KB 8KB 8KB

2.62

g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc
energy component:

Figure 6.14: Impact of compression on energy.

misses and execution time. These effects must be balanced against one another. The po-

tential exists for doing so on a per-application basis by selectively powering down cache

ways [3] or sets [96]. A similar strategy can be used for the RT. Below, we assume that the

replacement sequence space is the same size at the RT. No RT tag is necessary, reducing

the size of each RT entry, and thus, the RT’s total power consumption.

Energy and EDP.Figure 6.14 shows the relative energy consumptions and energy-delay

products (EDP, a metric that considers both energy and execution performance) of several

DISE-free and DISE decompression configurations. Energy bars are normalized to total

energy consumption of the DISE-free system with the larger (32KB or 16KB) instruction

cache, respectively. Each bar shows three energy components: instruction cache (light),

DISE structures (medium), and all other resources (dark). Notice, instruction cache en-

ergy is about 15-25% of total energy in a general purpose processor and 35-45% in an

embedded processor. The EDP for each configuration is shown as a triangle. There are

eight total configurations, uncompressed and compressed with three RT sizes for each of

two instruction cache sizes. Since RT misses have a high performance penalty and thus

energy cost, we use virtual dictionaries that are of the same size as the physical RTs.

DISE-based compression can reduce total energy and EDP even though the trade-off

121

between cache and RT instruction capacity highly favors the cache. In the first place, ac-

cessing two 16KB structures consumes more energy than accessing a single 32KB struc-

ture. Although wordline and bitline power grows roughly linearly with the number of

RAM cells in an array, the power consumed by supporting structures—wordline decoders,

sense-amplifiers and output drivers—is largely independent of array size. Multiple struc-

tures also consume more tag power. Our simulations show that a 32KB single-ported

cache consumes only slightly over 40% more energy per access than a single-ported 16KB

cache, not 100% more. Beyond that, however, an RT is less space efficient than an instruc-

tion cache because it must store per-instruction instantiation directives as well. When we

combine these factors, we see that in order to save energy over a 32KB configuration,

we must replace 16KB of cache (storage for 4K instructions) with a 3KB RT (storage for

512 replacement instruction specifications). Fortunately, the use of parameterized replace-

ment enables even small dictionaries to cover large static instruction spaces, making this

organization profitable.

For most benchmarks, the lowest energy (or EDP) configuration combines an instruc-

tion cache with an appropriately sized dictionary and RT. Note, the lowest energy and the

lowest EDP are often achieved using different configurations. In general, DISE is more

effective at reducing EDP than energy, as it trades instruction cache energy for RT energy.

Typical energy reductions are 2-5%, although reductions of 18% are sometimes observed

(e.g., ghostscriptwith 16KB instruction cache and 512-instruction dictionary). Without

RT misses (recall virtual dictionaries are sized to eliminate misses), performance improve-

ments due to instruction cache miss reductions account for EDP reductions which often

exceed 10% (e.g., eon, gap, perlbmk, vortex) and sometimes reach 60% (e.g., ghostscript).

Targeting compression to reduce cache accesses.A third way to reduce instruction

cache energy—and thus total energy and EDP—is to reduce the number of instruction

cacheaccesses. To this point, our compression profiles have been based on static instruc-

tion sequence frequency. As a result the statically most frequently occurring sequences

are compressed. Alternatively, compression profiles may encode dynamic sequence fre-

quency, allowing us to compress sequences that appear frequently in the dynamic execu-

tion stream. Our compression algorithm easily builds compression dictionaries for this

122

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.6

0.8

1.0

1.2

1.4

en
er

gy
 (n

or
m

. t
o

un
co

m
p.

/3
2K

) SPEC

32KB 32KB 32KB 32KB 32KB 32KB 32KB16KB 16KB 16KB 16KB 16KB 16KB 16KB
crafty eon gap parser perlbmk twolf vortex

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne

no
ne12
8

12
8

12
8

12
8

12
8

12
8

12
8

51
2

51
2

51
2

51
2

51
2

51
2

51
2

2K 2K 2K 2K 2K 2K 2K

0.4

0.6

0.8

1.0

1.2

1.4

1.6

en
er

gy
 (n

or
m

. t
o

un
co

m
p.

/1
6K

B
) MediaBench

RT i$ other energy-delay product

16KB 16KB 16KB 16KB 16KB 16KB 16KB8KB 8KB 8KB 8KB 8KB 8KB 8KB
g721.dec ghostscr.gs gsm.toast gsm.untoast jpeg.djpeg mpeg2.enc pegwit.enc

energy component:

Figure 6.15: Impact of profile-based code compression on energy.

scenario. It simply weighs each instruction sequence in a compression profile by an in-

cidence frequency taken from some dynamic execution profile. Although this will likely

not reduce code size by as much as the static alternative, compression in this manner will

further reduce cache energy.

In Figure 6.15, we repeat our experiment using dynamic-profile-based dictionaries

(note that we have chosen the inputs to these benchmarks to be different from those used

in the dynamic profiling step). By greatly reducing instruction cache power, especially for

larger dictionaries, dynamic decompression provides more significant reductions in both

energy and EDP. 10% energy reductions are common (e.g., eon, gap, vortex, ghostscript,

gsm) as are 20% EDP reductions. Note, the additional EDP reduction comes from the

corresponding energy reduction, not from a further reduction in execution time.

6.4 Related Work in Code Compression

The large body of work on code compression speaks to the importance of the technique.

In summary, the principal contribution of this chapter the demonstration that a general

purpose-dynamic code transformation mechanism (i.e., DISE) can be used to effectively

and efficiently implement dynamic code decompression.

123

Software-based approaches.Traditional static optimizations intended to accelerate ex-

ecution (e.g., dead-code elimination, common sub-expression elimination, register allo-

cation, etc.) often have the side effect of reducing code size [32]. We use an already

optimized uncompressed baseline in our experiments.Code factoringreplaces common

instruction sequences with calls to procedures containing these sequences. Factoring re-

duces code size at the expense of increased execution time due to function call over-

head [20, 32]. ISA extensions have been proposed to reduce this overhead [63].

Non-executable compressed formats permit more aggressive compression but require

an explicit and expensive decompression step before execution. Systems have been pro-

posed for decompressing code at the procedure [54] and cache-line granularities [60].

Although effective in reducing code size, the performance of these systems degrades sig-

nificantly. An interesting extension to these works builds on the observation that decom-

pressing frequently executed code slows execution; therefore by compressing only infre-

quently executed code, code size is reduced yet execution time is minimally degraded (say,

4% [31]). In contrast, hardware post-fetch decompression implementations like DISE, can

actually reduce execution time and energy by specifically concentrating on compressing

frequently executed code.

Ernstet al.describe a compressed code format (byte-code RISC or BRISC) that may

be directly interpreted (i.e., it does not require a separate decompression step) [36]. The

representation includes a form of operand parameterization. Although highly effective in

an interpreted environment, the approach is too expensive for hardware implementation.

ISA extensions.Certain ISAs (e.g., ARM’s Thumb [1] and MIPS16 [56]) support com-

pact code via short-form versions of commonly used instructions. Although there is no

significant overhead in decompression itself, performance suffers because the short for-

mats provide a limited register and opcode menu, increasing the number of instructions in

short format regions (mode switches are required between short and 32-bit code regions).

A recent ISA extension, Thumb-2, better balances the compression/performance trade-off,

approaching the compression levels of Thumb without as significant a performance degra-

dation [70]. Nevertheless, dense instruction encodings do not exploit repetition of code

sequences like coarse-grained (i.e., multiple instruction) compression schemes. Dense en-

codings and coarse-grained compression mechanisms are orthogonal and can be used in

124

conjunction.

Hardware-based approaches.Fill-path decompression is a hardware technique in which

compressed code in memory is decompressed by the instruction cache fill unit on a

miss. Examples of fill-path decompression include the Compressed Code RISC Proces-

sor (CCRP) [94] and IBM’s CodePack [50]. Fill-path decompression schemes necessitate

no processor core modifications and incur decompression cost only on instruction cache

misses. Although in rare cases they may improve performance (e.g., CodePack imple-

ments a form of prefetching), they often use sequential and computationally expensive

compression techniques (e.g., Huffman), resulting in significant runtime overhead. In ad-

dition, they store uncompressed code in the instruction cache, so the cache does not benefit

from a compressed image and the hardware must map uncompressed addresses to com-

pressed ones. Finally, the unit of compression is limited to the cache line, so individual

instructions (or bytes) are compressed rather than instruction sequences.

DISE performs post-fetch decompression, allowing the instruction cache to store com-

pressed code while maintaining a single static (compressed) image which does not require

address translation structures. Implementations of post-fetch dictionary decompression

using custom hardware has been previously proposed. One such system [59] uses a very

large dictionary (up to 8K entries, each consisting of one or more instructions) and 16-

bit codewords (which admit the compression of single instructions) to achieve impressive

code size reductions on PowerPC binaries. Another post-fetch decompression system [61]

uses variable length codewords and dictionary-based compression of common instructions

(not instruction sequences). Our implementation uses general-purpose hardware, a small

dictionary, and supports both parameterized and programmable decompression. Although

not a fundamental limitation of DISE, our scheme currently uses only 32-bit word-aligned

codewords.

Operand factorization [7] extends post-fetch decompression. Building on the observa-

tion that compressing whole instructions—i.e., opcodes and operands together—limits the

efficacy of a compression algorithm, operand factorization compresses opcodes (tree pat-

terns) and operands (operand patterns) separately. After fetch, tree and operand patterns

are decompressed and reassembled to form machine instructions. Operand factorization is

125

effective for very large dictionaries. Via register/immediate parameterization, DISE sup-

ports a limited form of operand factoring within the framework of an existing mechanism.

Nam et al. propose a VLIW post-fetch decompression system that supports a vari-

ant of operand factorization [67]. Individual VLIW instruction words are compressed to

indices in opcode and operand dictionaries. The number of instructions encoded by a sin-

gle compressed instruction is a function of the number of operations that appear in each

VLIW instruction (i.e., longer or shorter encodings are not possible). Namet al. also

find that compressing similar but not identical sequences (viainstruction isomorphism)

dramatically improves compression effectiveness.

6.5 Summary

Code compression/decompression is an important tool for architects of both embedded

and general purpose microprocessors. In this chapter, we present and evaluate an im-

plementation of dynamic code decompression based on DISE. A DISE implementation

of decompression has many advantages. It implements post-fetch decompression, allow-

ing the instruction cache to benefit from a compressed program image and removing the

need for mechanisms for translating uncompressed addresses to compressed ones. DISE’s

matching and parameterized replacement functionality supports parameterized compres-

sion, enabling better dictionary space utilization. DISE’s programmability also allows

individual applications to exploit custom dictionaries. Perhaps, DISE’s most compelling

advantage, however, is that it has many other applications besides code decompression,

making its inclusion in system design easier to justify than other proposed decompression

mechanisms.

This chapter includes an extensive experimental evaluation in which we not only mea-

sure code compression itself, but also evaluate its impact on dynamic characteristics such

as performance and energy. We show that DISE enables code size reductions of 25% to

35% and often results in better compression than previously proposed custom compres-

sion hardware. We measure the impact of DISE-specific features or attributes, such as

parameterization, branch compression, and demand-loading the dictionary. We find that

126

the most unique DISE feature (versus other hardware approaches to dynamic decompres-

sion), parameterization, dramatically improves its ability compress (by up to 20%) and

allows PC-relative branches to be compressed. We also evaluate a number of issues that

have implications for any post-fetch decompression mechanism. For example, we find that

application-customized dictionaries enable better compression than fixed dictionaries, and

a hybrid of the two is better still. We find that very large dictionaries are unnecessary. We

also quantify the impact of compression on performance (in some case a 20% improve-

ment) and energy (in some cases a 10% reduction).

127

Chapter 7

Security with DISE

Computer attacks that exploit software security vulnerabilities are a significant source

of lost time, lost data, lost revenue. These vulnerabilities arise from the use of unsafe

programming languages (C and C++, in particular) despite the availability of type-safe

programming languages (e.g., Java) as well as type-safe variants of unsafe languages [8,

47, 68]. The continued use and deployment of code written in unsafe languages is a result

of practical concerns, legacy codes, and inertia. Moreover, removing the vulnerabilities

from the static program is a costly endeavor in C [48, 75].

This chapter demonstrates the use of DISE in dynamically detecting two common

forms of attack:stack smashingandpointer smashing[24, 26]. Both attacks can severely

compromise the security of a system. In these attacks, the adversary exploits either a

bounds-unchecked array copy (calledbuffer overflow) or an improper use of format strings

to corrupt a memory-resident return address or pointer. By corrupting a return address or

pointer, the attacker can cause the program to transfer control to either attacker-defined

code (calledcode injection) or non-attacker-defined code such as a libc routine (calledarc

injection).

We use two existing techniques for preventing these two attacks. We prevent stack

smashing by dynamically verifying that each return address stored on the stack is not

corrupted during the lifetime of the function with which it is associated (as done in Lib-

verify [11], Return Address Defender [18], and StackGhost [38]). We prevent pointer

smashing by storing pointers in memory in encoded form (as done in PointGuard [28]).

Attackers cannot give pointersparticular values because the attacker does not know the

128

encoding key. DISE can protect return addresses without compiler support (i.e., it can

protect legacy code), while pointer protection in DISE requires recompilation to identify

loads and stores of pointers. Notice that our techniques do not prevent all types of attacks,

but rather prevent only stack and pointer smashing attacks.

Although both of these techniques have previously been implemented in software [11,

18, 27, 38, 28], a DISE-based attack detector has two virtues. First, as discussed in pre-

vious chapters, DISE does not perturb the instruction cache, and thus, efficiently provides

attack detection. In addition, DISE separates the applications from the detection code, the

latter of which is simply a transformation specification. With this separation, DISE attack

detection is highly flexible. If a new attack is discovered in which DISE can be used to

thwart, then only the separate attack detection code needs to be updated. A related bene-

fit is that system administrators or users may make per-system or per-application choices

concerning the level of protection (if any) they require without recompilation. A DISE-

based attack detector retains the above virtues even in instances when compiler support

is necessary (i.e., to identify pointer loads and stores for pointer protection), because the

compiler is used to identify and annotate potential vulnerabilities rather than embed the

actual detection mechanism.

Alternatively, researchers have proposed using hardware widgets to detect stack and

pointer smashing attacks [29, 49, 55, 65, 83, 87, 95, 97]. But these are more inflexible

than software approaches. To modify or augment the attack detection techniques requires

new hardware. Furthermore, unlike DISE, these hardware widgets are dedicated to attack

detection.

The outline for this chapter is as follows. Sections 7.1 and 7.2 describe and evalu-

ate a DISE-based implementation for protecting memory-resident return addresses and

pointers. Section 7.3 discusses some related work in software security.

7.1 DISE-Based Attack Detection

DISE can be used to protect stack-resident return addresses and memory-resident pointers.

129

7.1.1 Return Address Protection

We describe a DISE implementation of a mechanism for protecting return addresses from

stack-resident buffer-overflow attacks [24]. We use a previously-proposed shadow stack

approach [11, 18, 38]. The basic functional design is simple. We maintain a heap-based

shadow stack that mirrors the return addresses stored in the call stack. At each function

return, we check that the actual return address matches the address on top of the shadow

stack and alert the OS on a mismatch.

Our implementation requires two specifications for transforming function calls, and

returns. It also uses two auxiliary DISE routines and a region of memory for storing

the shadow stack (see Chapter 3). Finally, our implementation uses several DISE reg-

isters, which we refer to mnemonically as$dscr (scratch),$dssb (shadow stack base),

$dssp (shadow stack pointer), and$darp , which points to the top of the currently allocated

shadow stack region.

Maintaining the shadow stack.Shadow-stack management is performed by transforma-

tion on call (jsr andbsr) and return (ret) instructions. The replacement sequence in the

call specification (top of Figure 7.1) computes the return address using the trigger’s own

program counter, pushes it onto the shadow stack (along with the stack pointer, which is

discussed below), checks for shadow-stack overflow (callingexpand() if necessary), and

performs the original call (T.INST). If expand() is called, it will allocate a larger stack re-

gion (similar tomalloc()), copy the old stack into the new buffer, and update the DISE

registers to reflect the new location. The return replacement sequence (bottom) pops the

shadow stack and performs the original return (again,T.INST).

Verifying return addresses. In addition to popping the shadow stack, the return instruc-

tion’s replacement code verifies that the intended or actual return address matches the

address at the top of the shadow stack. The replacement sequence compares the popped

address to the address specified by the return’s source register (T.RB). On a match—this

is the common case—the original return instruction is executed. On a mismatch, thead-

drcheck() function is called.

Normally,addrcheck() will terminate the program because address mismatch indicates

tampering. However, there are circumstances in which return address mismatches are

130

match on calls
compute return addr
push return addr...
...and stack pointer
...on shadow stack
stack full?
yes? then call expand
perform call

T.OPCLASS == call
=> addq T.PC,4,$dscr
 stq $dscr,0($dssp)
 stq $sp,8($dssp)
 addq $dssp,16,$dssp
 cmpeq $dssp,$darp,$dscr
 d_ccallne expand,$dscr
 T.INST

match on returns
pop address off...
...of shadow stack
comp. to return addr
diff? then call error
perform return

T.OPCLASS == return
=> subq $dssp,16,$dssp
 ldq $dscr,0($dssp)
 cmpeq $dscr,T.RB,$dscr
 d_ccalleq addrcheck,$dscr
 T.INST

Figure 7.1: DISE transformation specifications for return address protection.

legal. The use of non-local returns (e.g., exceptions orsetjmp() /longjmp()) will cause the

system to falsely report a corrupted return address. Previous systems [18, 38] handled

these situations by repeatedly popping the shadow stack until an address match is obtained,

terminating the program only when the shadow stack underflows. This solution has two

drawbacks. First, it allows the shadow and runtime stacks to get out of sync when multiple

instances of the same call site are active. Second, it does not prevent an attacker from

diverting control to arbitrary locations in the call chain. We solve this problem by pushing

the current stack pointer ($sp) along with the return address onto the shadow stack. On

a return address mismatch, we repeatedly pop shadow stack entries (withinaddrcheck())

until the return address and stack pointerboth match. We depend on the fact that the

stack pointer itself is not stored in memory and can be reliably used to identify the calling

context of a function and thus distinguish benign non-local returns from malicious ones. If

addrcheck() recognizes a non-local return and returns to the replacement sequence without

terminating the program, the actual return instruction (T.INST) is executed and program

execution continues.

Figure 7.2 shows theaddrcheck() routine. The routine starts by saving some registers to

memory. It then usesd mfdr to move values from DISE registers to conventional registers.

The core ofaddrcheck() is a loop that scans the shadow stack looking for an entry with

a matching return address and stack pointer. It starts by popping the top of the shadow

131

save registers $1-$4 to DISE memory region (not shown)

move state from DISE registers to conventional registers:
d_mfdr $1,$d0
d_mfdr $2,$dssp
d_mfdr $3,$dssb

loop:
subq $2,16,$2
cmpeq $2,$3,$4
bne $4,no_match
ldq $4,0($2)
cmpeq $4,$1,$4
beq $4,loop
ldq $4,8($2)
cmpeq $sp,$4,$4
bne $4,match
br loop

no_match:
bsr error_handler

match:
subq $2,16,$2

restore registers $1-$4 (not shown)

d_ret

get the problem return address
get the shadow stack pointer
get the shadow stack base address

start of loop
pop top of shadow stack
compare shadow stack pointer to base address
same? then branch to no_match
else get address on top of shadow stack
compare address to problem return address
diff? then goto next loop iteration (skip sp check)
(otherwise check sp) get sp off of top of shadow stack
compare stack sp to current sp
same? then goto match
else continue looping (end of loop)

no match found
call error handler (doesn't return)

match found
pop top of shadow stack

DISE return

Figure 7.2: Theaddrcheck() routine.

stack (since this entry was checked within the replacement sequence) and checking if the

next entry has a matching return address and stack pointer. If it does, thenaddrcheck()

breaks from the loop, pops the top of the shadow stack, restores the used registers (not

shown), and returns using a DISE return (d ret). Otherwise,addrcheck() continues to the

next iteration of the loop. Although the overhead from executing this code is expensive,

addrcheck() will be called only in rare cases (e.g., on asetjmp() /longjmp()). Furthermore,

if addrcheck() finds that the return address was corrupted, then the overhead is irrelevant

because the program will be terminated.

132

Compiler support. Like the Alpha, most ISAs have instructions for function calls and re-

turns, so they require no compiler support to protect return addresses via DISE. Those that

do not, require the compiler to instrument the program with DISE codewords at function

call and return. These will expand into instruction sequences to manipulate the shadow

stack.

Protecting the shadow stack itself. In addition to detecting return address corruption,

we also detect corruption of the shadow stack, itself. We use a previously-proposed tech-

nique [11, 18] that exploits virtual memory protection. We sandwich the shadow stack be-

tween two unused, write-protected pages (e.g., via mprotect()), thus preventing any buffer

from overflowing into it.

Benefits of DISE. In a DISE implementation of return address protection, the applica-

tion and attack detection mechanism are separate, making the implementation conceptu-

ally simpler, more efficient, and more flexible. Unlike static transformation approaches,

DISE return address protection can operate on legacy binaries, dynamically-linked code,

and even dynamically-generated code. Unlike hardware approaches, a DISE-based attack

detector is far more general, able to detect other attacks (e.g., pointer corruption) or im-

plement non-security-related transformations (e.g., for profiling, code decompression, or

debugging). Finally, a DISE implementation has a software-distribution advantage. A dis-

tributed patch, which is simply the new DISE specifications, can be applied transparently

to all applications. The equivalent software patches must be distributed and applied on an

application or dynamically-linked-library basis.

7.1.2 Pointer Protection

Protecting return addresses prevents stack smashing, but there are other ways to subvert a

running program. If an attacker can corrupt a pointer (function or data) then the attacker

may also be able to achieve a code or arc injection attack [71]. To prevent such attacks, we

use a previously proposed technique [28] that encodes pointers (including array pointers)

while in memory. Attackers may still corrupt pointers, but they can not give them partic-

ular values because they do not know the encoding key. As a result, corruption will likely

cause a program crash rather than subversion.

133

match "store" codewords
encode pointer
perform the (patched) store

T.OPCODE == res1
=> xor T.RA,$dxr,$dscr
 stq $dscr,T.IMM(T.RB)

match "load" codewords
perform the (patched) store
decode pointer

T.OPCODE == res2
=> ldq $dscr,T.IMM(T.RB)
 xor $dscr,$dxr,T.RA

Figure 7.3: DISE transformation specifications for pointer encoding/decoding.

We achieve pointer protection in DISE by replacing pointer-manipulating load and

store instructions with DISE-aware codewords during compilation. The DISE mechanism

is programmed with corresponding specifications that expand to loads or stores along

with the appropriate encoding and decoding logic. Although recompilation is necessary,

replacement sequence selection (which may happen as late as load time) determines what

encoding mechanism (if any) is to be used.

Encoding/decoding. Any reversible encoding technique may be used, but performance

concerns exclude true encryption in most contexts. In most cases, it is sufficient to use

computationally efficient encodings viaxor , bit-wise permutation, bit-wise rotation, arith-

metic operations (e.g., add and subtract), or combinations of these.1 Xor-based store and

load specifications are shown in Figure 7.3. The store specification matches on codewords

using reserved opcoderes1 and the load specification matches on codewords using re-

served opcoderes2 . The encoding key, which is determined at application startup, is kept

in DISE register$dxr .

Strong encryption/decryption. As Tucket al. described [87], an attacker can exploit a

read buffer overflowvulnerability to uncover encoded pointer values. A read buffer over-

flow attack is similar to a conventional buffer overflow attack except the vulnerable code

reads from an array rather than writing to one. The attacker may also know the unen-

coded pointer value, and using cryptanalysis may be able to determine the key given a

weak encoding scheme (e.g., xor). This attack, however, must be executed while the pro-

gram is running since a different key is generated for each running process. Even still, in

1Naturally, arithmetic, rotational, and permuted encodings should not be used alone; their value comes
in using them with other transformations.

134

some circumstances, this attack may be a realistic threat. In these cases, strong encryp-

tion/decryption techniques should be employed. To make this efficient, encryption and

decryption needs to be implemented in hardware. For example, Tucket al. [87] propose

adding two new instructions to the ISA:e-store (store encrypted) andd-load (load de-

crypted). There are many ways to implement these instructions. Tucket al.propose using

either a random permutation table or for higher security, hardware-implemented AES [30].

In processors that support these instructions, DISE can easily take advantage of them. The

instructions in the two replacement sequences in Figure 7.3 are simply replaced with an

e-store and ad-load , respectively. Because the application and protection mechanism are

separate, the encoding or encryption technique can be decided by the end user. If higher

security is necessitated and a processor has hardware support for encryption/decryption,

then encryption can be utilized without recompiling or statically transforming the appli-

cation.

Compiler support. The compiler must statically identify loads and stores that manipulate

pointers and replace them with corresponding DISE codewords. We have not implemented

this compiler support ourselves, however, this support has been incorporated into GNU gcc

by Cowanet al. in their implementation of PointGuard [28]. Instead, in our evaluation

of pointer protection in Section 7.2, we use a dynamic analysis tool to conservatively

approximate pointer loads and stores.

Unfortunately, compiler support limits application portability. Statically-inserted

codewords will not execute on machines without DISE. Fortunately, we can still achieve

portability by utilizing trap handling. When a codeword is executed, a non-DISE processor

will trap to the operating system. The application can run normally (and with protection)

by registering a trap handler that executes the appropriate replacement sequence. The

semantics of the program and the protection mechanism will be preserved although at a

greater performance cost. However, as shown in the evaluation in Section 7.2, pointer

loads and stores are infrequently executed, making the performance degradation reason-

able.

Separating DISE code and application code.As described in Chapter 3 (page 36), when

compiling an aware application users have the option of storing DISE code (specifications

and auxiliary code) within the program binary. In the context of security, users should

135

instead leave the binaries separate so that the DISE code can be recompiled without re-

quiring the application to be recompiled. When new attacks arise, only the DISE code

requires recompilation. Furthermore, one DISE binary can be used to transform many

applications.

Benefits of DISE.The separation of application and attack protection mechanism allows

users and system administrators to stay ahead of attackers without recompilation. Once a

program has been recompiled once to identify loads and stores of pointers, we may protect

those pointers using any mechanism we like via replacement sequence selection. When

attackers have subverted simplexor s [87], we may use encodings also involving bit-wise

rotation and permutation. We can even use strong encryption if the context warrants it.

By customizing the encoding mechanism per system or even per process, attack is made

more difficult. Customization in static pointer-protection schemes would likely require

frequent compilation. In addition, a DISE-based pointer protector benefits from DISE’s

private register space. The running program is not permitted to see DISE registers, and

therefore, it is more difficult for attackers to learn encoding keys directly. Conversely, a

static implementation is likely to spill the encoding key (residing in a standard, non-DISE

register) to memory on function calls, exposing it to read buffer overflow attacks [87].

7.2 Evaluation of DISE-Based Attack Detection

We use cycle-level simulation to evaluate DISE-based return address and pointer smashing

attack detection, both in terms of effectiveness and performance overhead.

7.2.1 Methodology

Simulator. Our general methodology is described in Section 4.2 of Chapter 4. We simu-

late using SimpleScalar Alpha [16], modeling the machine from Table 4.1 on page 54. We

use a 2-stage decoder-based implementation of DISE with a 32-entry pattern table and a

512-entry replacement table (see Chapter 4).

Benchmarks. Our benchmarks are selected from SPEC, MiBench [40], and Comm-

Bench [93]. Other than the SPEC benchmarks, we choose codes that would likely be

136

suite benchmark
static attributes dynamic attributes
code size (insn) IPC calls loads stores ptr. loads ptr. stores

S
P

E
C

in
t

20
00

bzip2 36,013 2.37 .51% 24.45% 16.93% 2.96% 1.27%
eon 150,998 2.13 1.94% 25.14% 17.41% 5.80% 2.24%
mcf 32,018 1.36 2.54% 21.89% 14.87% 9.05% 2.57%
twolf 88,324 1.84 1.07% 23.77% 7.53% 7.54% .78%

M
iB

en
ch

bfish.enc 15,923 2.86 .87% 22.33% 10.67% 5.56% 4.04%
crc 27,447 3.83 ∼0% 21.74% 13.04% 4.35% 4.35%
patricia 36,811 1.82 2.04% 22.24% 9.79% 7.98% 2.60%
sha 22,057 3.00 .03% 13.47% 3.63% .01% ∼0%

C
om

m
-

be
nc

h

cast.enc 15,301 2.47 .60% 21.56% 9.42% 4.21% 2.90%
drr 27,486 2.16 ∼0% 35.48% 9.39% 24.57% 8.48%
reed.dec 13,582 2.59 ∼0% 12.24% 5.69% .01% ∼0%
rtr 38,522 2.59 1.65% 25.47% 6.77% 9.10% 3.27%

Table 7.1: Benchmark summary.

sensitive to attacks (e.g., those running with root permissions or in a trusted piece of hard-

ware) and thus would benefit from protection. For brevity, we show only a subset of the

three benchmark suites. However, the chosen benchmarks are representative of all the

benchmarks in all three suites. Table 7.1 summarizes benchmark characteristics useful in

interpreting the presented results.

Compiler support. Detecting corruption of memory-resident pointers requires compiler

support. Rather than build or extend a compiler, we have built binary analysis tools to

approximate the necessary static analysis and transformation. We use simple static anal-

ysis and dynamic profile information to conservatively identify memory operations that

manipulate pointers. This solution is not satisfactory in general, but it is representative of

true static transformations. It is used only in estimating performance overhead.

Binary rewriter. We compare DISE-based attack detection with a binary rewriter imple-

mentation. The binary rewritten code contains exactly the same instructions as the DISE

transformed code (after dynamic instrumentation) because the former are not statically

optimized. However, because these transformations instrument loads, stores, and control

flow instructions, there is little opportunity for static optimization.

137

7.2.2 Protection Effectiveness

Here we show that using DISE, we can detect real attacks on vulnerable code. Further-

more, for the benchmarks and inputs that we used, our techniques detected all attacks and

did not signal an attack when there was none.

Protecting return addresses.None of our benchmarks are vulnerable to return address

corruption, so we identify three other vulnerable programs:overflow1, gzip-1.2.4, and

sendmail-8.7.5. The first was presented in a hacker’s tutorial on buffer-overflow attacks [4]

and represents a prototypical vulnerability. The others are vulnerable versions of well-

known codes. In all three cases, our DISE implementation successfully detects an input

attack and terminates the program. At the same time, non-malicious inputs do not spuri-

ously signal an attack for these three programs or any of the benchmarks used to evaluate

performance.

Protecting pointers. The effectiveness of pointer encoding has been demonstrated else-

where [28, 87], but we confirm these results with a synthetic fault injector. Our fault

injector changes the value read by a random pointer load to a random value, simulating

the corruption of a single pointer in memory. We use this fault injector to “attack” each

benchmark ten times, one fault per attack. In the majority of cases, the program crashes.

On a few occasions corruption does not result in a crash because the corrupted value is not

used after it is loaded. In most cases, the program crashes very soon after the pointer is

corrupted. In addition, we find no false positives,i.e., programs crashing when there is no

attack.

7.2.3 Performance Overhead

The overhead of the two protection mechanisms in DISE is shown in Figure 7.4 (shaded

bar). Because function calls, returns, and pointer memory operations are relatively infre-

quent (see Table 7.1) the overhead of both return address protection (RAP) and pointer

protection (PP) is usually small (i.e., less than 10%). Benchmarks with higher function

call density suffer a higher return address protection overhead (e.g., eon, mcf, andrtr).

Similarly, benchmarks with relatively more pointer loads and stores suffer higher overhead

for pointer protection (e.g., drr, rtr , andtwolf). Nevertheless, in all cases, the overhead

138

1.0

1.2

1.4

1.6

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

Binary Rewriter
DISE

1.83

spec mibench commbench

RA
P

RA
P

RA
P

RA
P PP

PP

PP

PP

RA
P+

PP

RA
P+

PP

RA
P+

PP

RA
P+

PP

RA
P

RA
P

RA
P

RA
P PP

PP

PP

PP

RA
P+

PP

RA
P+

PP

RA
P+

PP

RA
P+

PP

RA
P

RA
P

RA
P

RA
P PP

PP

PP

PP

RA
P+

PP

RA
P+

PP

RA
P+

PP

RA
P+

PP

bzip2 eon mcf twolf bfish.enc crc patricia sha cast.enc drr reed.dec rtr

Figure 7.4: Overhead of return address protection (RAP), pointer protection (PP), and the
combination of both techniques (RAP+PP) using DISE and binary rewriting.

for protecting return addresses and pointers is less than 50%.

Combining the techniques.Figure 7.4 also shows protection overhead when combining

these techniques (RAP+PP). The overhead of combining the two techniques is naturally

additive because each injects code at different places in the program (calls/returns versus

memory operations). As with protecting return addresses or pointers separately, the over-

head is always less than 50% and usually less than 20%. A virtue of using DISE is that

system administrators can choose the protection mechanisms. For systems that require

higher performance, administrators can tradeoff protection for overhead (e.g., turning off

pointer protection for workloads such asdrr).

Versus static transformation. Although software-only static transformation sacrifices

the benefits of DISE, it is still a natural approach to dynamic attack detection. Figure 7.4

also shows the overhead of a static binary rewriting implementation. In some cases, the

performance is very similar (e.g., bzip2, bfish.enc, andcast.enc), while in other cases the

DISE-based approach performs much better (e.g., eon, patricia, rtr). The differences arise

due to poor instruction cache performance in the static case. The benchmarks with the

larger code sizes (from Table 7.1) generally have larger differences in performance. The

overhead of dynamic software translation (translation at load/runtime) would be worse

then the overhead of the compiler-based approach in Figure 7.4, due to the additional cost

of the translation.

139

1

2

3

4

5

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

XOR Arithmetic Rotate Permute All All w/ ISA Support

5.
5

8.
6

9.
9

5.
1

spec mibench commbench

bzip2 eon mcf twolf bfish.enc crc patricia sha cast.enc drr reed.dec rtr

Figure 7.5: Performance impact of pointer encoding.

7.2.4 Customizing Attack Detection

As described in the previous section, DISE attack detection is customizable. Below we

evaluate the performance impact of customizing the pointer-encoding technique.

Customizing the encoding.DISE is flexible in that any set of protection mechanisms may

be applied to a single program. This allows users to select an appropriate protection level,

but it also contributes to the strength of security itself. For example, consider pointer

protection. Encoding pointers viaxor is efficient but not particularly strong. Tucket

al. describe an attack that exploits this weakness [87]. With DISE, one may change the

encoding algorithm on a per-system or per-application basis. Subversion is made more

difficult because the attacker does not know the encoding key nor the algorithm used.

Figure 7.5, shows five example encodings:xor , arithmetic (e.g., add and subtract), bit-

wise rotate, byte-wise permute, and all five together. Rotate and permute may require

multiple instructions to implement (e.g., as in the Alpha ISA), so they are much more

expensive thenxor or arithmetic. Rotation can be achieved using 4 Alpha instructions

so it generally has a reasonable overhead (less than 50%). Permute, on the other hand,

requires 31 instructions, so it is expensive. Note that the overheads ofshaandreed.dec

are negligible since they have very few loads and stores of pointers.

When all four encodings are combined (second-to-last bar in Figure 7.5), performance

is limited by the very expensive permute. If an architecture provides bit-wise permute and

rotate instructions, the overhead is much lower (the final bar).

Strong encryption/decryption. For some systems, strong encryption may be more desir-

able than weaker encoding schemes like those shown in Figure 7.5. To achieve acceptable

140

1

3

5

7

ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

ba
se

lin
e)

AES-40 AES-80 All-encode

6.8 9.9 12.8

spec mibench commbench

bzip2 eon mcf twolf bfish.enc crc patricia sha cast.enc drr reed.dec rtr

Figure 7.6: Performance impact of hardware-supported pointer encryption.

performance, encryption must be implemented in hardware. Because of the flexibility

of DISE, utilizing hardware support for encryption can be done without recompiling the

application.

Figure 7.6 shows DISE pointer protection utilizing hardware support for AES.AES-

40 andAES-80represent the performance with a 40-cycle, encryption/decryption latency

and a 80-cycle, encryption/decryption latency, respectively. For comparison purposes, we

show theAll bar (without ISA support) from Figure 7.5 (in Figure 7.6 calledall-encode).

As we would expect, the overhead when using hardware-implemented AES is high for

benchmarks with a significant number of pointer loads and stores and low for the others.

For many benchmarks, the overhead ofAES-40is similar to that ofAll-encode. In

All-encodewe added approximately 40 instructions per pointer memory instruction, while

in AES-40the overhead of a pointer memory instruction is 40 cycles. Often, these two

transformations are equivalent. However,All-encode, unlike AES-40, reduces machine

resources due to the additional instructions. For benchmarks with higher IPCs (e.g.,

bfish.encandcrc), All-encodedoes significantly worse thanAES-40since they are more

sensitive to the loss in resources. In summary,AES-40outperformsAll-encodeand pro-

vides higher security. If machines support a 40-cycle encryption operation in hardware,

it should be utilized over the more expensive encoding operations from Figure 7.5 (e.g.,

permutation).

Of course, the overhead ofAES-80is always higher thanAES-40. In addition, the

overhead ofAES-80is sometimes lower thanAll-encode(e.g., drr), but usually signifi-

cantly higher (e.g., eon, twolf, andrtr). The replacement code inAES-80does not use as

many machine resources, however, the latency (at least, 80 cycles) is often higher than

141

the latency of theAll-encodereplacement sequence. These two bars represent a tradeoff

between security and performance. When machines support a 80-cycle encryption instruc-

tion in hardware (and not a 40-cycle instruction), users concerned primarily with security

should useAES-80, while users concerned more with performance should useAll-encode

(or some other encoding scheme that has even lower overhead). Because of the flexibil-

ity of DISE, switching between any of the encryption or encoding techniques shown in

Figures 7.5 and 7.6 can be done without recompiling the application.

7.3 Related Work in Software Security

Both software and hardware techniques have been proposed to protect software from se-

curity vulnerabilities.

Software techniques. Bounds checking can be added by the compiler to C pro-

grams [48, 75] to prevent buffer overflow attacks. This provides a higher level of security,

then dynamic attack detection, albeit at a higher overhead. In addition, this technique

will not prevent attacks that exploit improper uses of format strings and in some circum-

stances results in false positives. Libsafe [11] performs bounds checking on stack-resident

buffers referenced by C standard library routines (e.g., strcpy()) via stack inspection. This

approach is more efficient than general bounds checking, although more limited in scope.

Some techniques, like those discussed in this chapter, forgo detecting vulnerabili-

ties (e.g., unchecked buffer access) and instead detect the subsequent attack. A host of

compilation techniques (e.g., StackGuard [27], Libverify [11], Return Address Defender

(RAD) [18], and StackGhost [38]) have been proposed to detect return address corruption.

In this chapter, we implemented return address protection via a shadow stack as described

in three of these works [11, 18, 38]. Some software techniques leverage dynamic soft-

ware translation (e.g., program shepherding [53], Strata [79]). Like DISE, these provide

the flexibility of altering or modifying the attack detection mechanism, but with a higher

performance overhead due to the additional cost of translation.

Cowanet al.thwart a broader class of code and arc injection attacks that rely on pointer

corruption by encoding pointers (and only pointers) when they are written to memory [28].

142

Since attackers do not know the application-specific encoding key, they are unable to cor-

rupt pointers in memory with particular values. In this chapter, we showed an implemen-

tation of this technique in DISE.

Some recent proposals have explored type-safe variants of the C programming lan-

guage [8, 47, 68]. These proposals provide higher security than the techniques in this

chapter, however, they require some changes to the C programming language.

Hardware techniques. Return address protection has also been implemented in hard-

ware [65, 95, 97]. Kirovskiet al. [55] propose hardware and software installation support

to encrypt programs based on a key hidden in the hardware. Kcet al. [49] proposed

hardware support for instruction-set randomization. Both techniques prevent code injec-

tion attacks, but neither prevents arc injection attacks. Suhet al. [83] and Crandall and

Chong [29] propose implementing data-flow monitoring in hardware to track spurious

(i.e., untrusted) data identified by the operating system. Whenever spurious data is used

in an insecure way (e.g., as the target of a jump), the program is killed. These tech-

niques detect a broader class of attacks, at the expense of false positives and non-trivial,

security-specific processor modifications. Tucket al. [87] propose hardware support for

PointGuard [28] with stronger encryption techniques to prevent some forms of read buffer

overflow attacks.

7.4 Summary

DISE is an effective mechanism for dynamically detecting stack and pointer smashing

attacks. As discussed in previous chapters, DISE attack detection is efficient because

instruction macro-expansion latency is negligible and because DISE has no impact on in-

struction cache performance. In addition, a DISE-based attack detector separates applica-

tion and detection code, dynamically injecting the latter as the former runs. The flexibility

of this structure allows a single program (once transformed to identify vulnerabilities) to

be protected in many different ways based on the needs of the user or system administra-

tor. It also allows one to apply new protection techniques to programs without rebuilding

them. Finally, DISE is a general purpose mechanism that can not only be used to detect

stack and pointer smashing attacks, but also to profile (Chapters 3 and 4), decompress a

143

program (Chapter 6), or to watch a memory location in an interactive debugging environ-

ment (Chapter 5). In summary, we find that stack and pointer smashing attack detection

via DISE is effective, flexible, and efficient.

144

Chapter 8

Conclusions

In this chapter, we summarize our findings in this dissertation and describe some future

directions of this work.

8.1 DISE Summary

The field of computing is no longer performance-dominated like it once was. Today’s

users are concerned with many other characteristics including security, reliability, and

program size. Unfortunately, not all users care equally about each characteristic, and

therefore, we need to customize programs for each individual user and program.

Customization can be achieved through program transformation. Many various trans-

formation mechanisms exist, all implemented in software (e.g., binary rewriters, software

dynamic translators). Unfortunately, a software translator splices the additional code into

the program, degrading instruction cache performance. The transformation cost is also

high, and if translation occurs at runtime is perceived as additional overhead.

To address these performance shortcomings, many researchers have proposed hard-

ware widgets to customize the program (e.g., monitoring execution) within the processor.

Hardware widgets have low overhead, but they are not programmable and are generally

dedicated to one particular type of customization (e.g., profiling).

In this dissertation, we propose a hybrid approach: a programmable hardware mecha-

nism. We call this facility adynamic instruction stream editoror DISE, for short. DISE

145

transforms programs using instruction macro-expansion. It takes as input individual in-

structions and outputs instruction sequences based on the inputted instruction. It inspects

every fetched instruction, macro-expanding on some of the instructions, and the translated

instruction stream is passed to the decoder.

Because DISE is programmable, transformations are easily added, removed, or mod-

ified. In addition, this dissertation demonstrates the formulation of many different types

of transformations in DISE, including transformations for profiling (Chapter 3), debug-

ging (Chapter 5), decompression (Chapter 6), and security (Chapter 7). Because DISE is

a hardware mechanism, transformation is also efficient. The cost of transforming instruc-

tions is negligible (although there is the overhead of executing the transformed code). In

addition, the program image is unaltered and consequently instruction cache performance

does not suffer. In summary, we find that DISE is a flexible and efficient mechanism for

transforming (and customizing) programs.

8.2 Future Directions

Below we present three future directions of this work.

System-level transformation. In this dissertation, we proposed a user-level tool (i.e.,

DISE) for transforming applications. In future work, we will explore a system-level DISE.

For example, if DISE could transform kernel code, then it could potentially be used to fault

isolate device drivers (as done in Nooks [84]). However, we would need to prevent users

from subverting the operating system via DISE. For instance, DISE should not be allowed

to match on programming instructions such atd toggle or d sync . Otherwise, a user-

level application could prevent the OS from disabling DISE. In this dissertation, because

DISE cannot match on kernel-level code, matching on programming instructions is not a

problem. In addition, when the machine is booted, DISE should be disabled.

In addition to transforming kernel code, we will explore system-controlled DISE

transformation. If system administrators could transform user-level applications in ar-

bitrary ways, it would allow them to perform system wide transformations (e.g., profiling

all applications) or to enforce security transformations (e.g., stack and pointer smash-

ing) in certain classes of applications (e.g., network accessible applications). There are

146

many challenges in the implementation of system-controlled DISE transformation. First,

administrator-defined transformations should not be subvertable by the user or application.

Furthermore, the system should be able to compose transformations submitted by multiple

parties for the same application. In such cases, the higher-privileged transformations (i.e.,

administrator’s) should not be undone by lower-privileged transformations (i.e., user’s).

More advanced pattern matching. Another area of future work is exploring more ad-

vanced pattern matching in DISE. For example, allowing DISE to match on a window

of instructions rather than only one instruction at a time. Furthermore, allowing DISE

to match on dynamic properties of an instruction, such as the value in one of its regis-

ter operands. These two extensions would potentially allow users to perform optimiza-

tions such as silent store elimination [62]. The main challenge is in the implementation.

Can this be efficiently implemented, preferably with as little impact as possible on non-

transformed programs? What is the impact on microarchitecture design? Furthermore, do

the additional uses of DISE justify the implementation costs?

Abstract interface. As discussed in Chapter 3, DISE is programmed (at the lowest level)

using a binary representation of patterns and replacement sequence. Of course, if this

interface changes in the future then previously-written specifications will no longer be

compatible. Furthermore, the low-level interface encodes machine instructions into pat-

tern and replacement instruction representations. Therefore, if the ISA changes, the DISE

interface will also have to change. In future work, we will explore an abstract interface

of DISE. We will add library support for translating the abstract interface into the binary

interface. These library routines, which will translate specifications at load time, will need

to be efficient, otherwise, this will add to the startup cost of the running program.

147

Bibliography

[1] Advanced RISC Machines Ltd.An Introduction to Thumb, March 1995.

[2] A. Agarwal, R. Sites, and M. Horowitz. ATUM: A New Technique for Capturing Ad-

dress Traces Using Microcode. InProc. 13th International Symposium on Computer

Architecture, pages 119–127, May 1986.

[3] D. Albonesi. Selective cache ways: On demand cache resource allocation. In

Proceedings 32nd International Symposium on Microarchitecture, pages 248–259,

November 1999.

[4] Aleph One. Smashing the stack for fun and profit.Phrack, 7(49), Nov. 1996.

[5] A. W. Appel and K. Li. Virtual memory primitives for user programs. InProc. of

4th Intl. Conf. on Architectural Support for Programming Languages and Operating

Systems, pages 96–107, Apr. 1991.

[6] Z. Aral, I. Gertner, and G. Schaffer. Efficient debugging primitives for multipro-

cessors. InProc. of 3rd Intl. Conf. on Architectural Support for Programming Lan-

guages and Operating Systems, pages 87–95, Apr. 1989.

[7] G. Araujo, P. Centoducatte, and M. Cortes. Code compression based on operand

factorization. InProceedings of the 31st International Symposium on Microarchitec-

ture, pages 194–201, December 1998.

[8] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all

pointer and array access errors. InProceedings of the ACM SIGPLAN ’94 Conference

on Programming Language Design and Implementation, pages 290–301, 1994.

148

[9] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic optimiza-

tion system. InProc. of the SIGPLAN 2000 Conference on Programming Language

Design and Implementation, June 2000.

[10] Thomas Ball and James R. Larus. Optimally profiling and tracing programs.

ACM Transactions on Programming Languages and Systems, 16(4):1319–1360, July

1994.

[11] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against stack

smashing attacks. InProc. of USENIX Annual Technical Conference, Jun. 2000.

[12] B. Bloom. Space/time tradeoffs in hash coding with allowable errors.CACM,

13(7):422–426, Jul. 1970.

[13] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level

power analysis and optimizations. InProceedings 27th International Symposium on

Computer Architecture, pages 83–94, June 2000.

[14] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for

adaptive dynamic optimization. InProc. of Intl. Symp. on Code Generation and

Optimization, pages 265–275, Mar. 2003.

[15] B. Buck and J. K. Hollingsworth. An API for runtime code patching.Intl. J. of High

Performance Computing Applications, 14(4):317–329, 2000.

[16] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical Report

1342, University of Wisconsin–Madison Computer Sciences Department, 1997.

[17] R. E. Calcagni and W. Sherwood. Patchable control store for reduced microcode risk

in a VLSI VAX microcomputer. InProc. of the 17th Microprogramming Workshop,

pages 70–76, 1984.

[18] Tzi-Ckr Chiueh and Fu-Hau Hsu. RAD: A compile-time solution to buffer overflow

attacks. InProc. of 21st Intl. Conf. on Distributed Computing Systems, Apr. 2001.

149

[19] Yuan Chou, Jason Fung, and John Paul Shen. Reducing branch misprediction penal-

ties via dynamic control independence detection. InICS ’99: Proceedings of the

13th international conference on Supercomputing, 1999.

[20] Keith Cooper and Nathaniel McIntosh. Enhanced code compression for embedded

RISC processors. InProceedings of the ACM SIGPLAN ’99 Conference on Pro-

gramming Language Design and Implementation, pages 139–149, 1999.

[21] M. L. Corliss and E. C. Lewis. A DISE framework for securing software. Technical

Report MS-CIS-05-13, University of Pennsylvania, Apr. 2005.

[22] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A programmable macro engine for

customizing applications. InProc. of 30th Intl. Symp. on Computer Architecture,

Jun. 2003.

[23] M. L. Corliss, E. C. Lewis, and A. Roth. A DISE implementation of dynamic code

decompression. InProc. of Conf. on Languages, Compilers, and Tools for Embedded

Systems, pages 232–243, Jun. 2003.

[24] M. L. Corliss, E. C. Lewis, and A. Roth. Using DISE to protect return addresses from

attack. InProc. of Workshop on Architectural Support for Security and Anti-Virus,

pages 65–72, Oct. 2004.

[25] M. L. Corliss, E. C. Lewis, and A. Roth. Low-overhead interactive debugging via dy-

namic instrumentation with DISE. InProc. of 11th Intl. Symp. on High-Performance

Computer Architecture, pages 303–314, Feb. 2005.

[26] M. L. Corliss, E. C. Lewis, and A. Roth. The Implementation and Evaluation of

Dynamic Code Decompression Using DISE.ACM Transactions on Embedded Com-

puting Systems, 4(1), Feb. 2005.

[27] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beat-

tie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard: Au-

tomatic adaptive detection and prevention buffer overflow attacks. InProc. of 7th

USENIX Security Conference, pages 63–78, Jan. 1998.

150

[28] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointGuard: Protect-

ing pointers from buffer overflow vulnerabilities. InProc. of 12th USENIX Security

Symposium, pages 91–104, Aug. 2003.

[29] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack prevention

orthogonal to memory model. InProc. of 37th Intl. Symp. on Microarchitecture,

pages 221–232, Dec. 2004.

[30] J. Daemen and V. Rijmen. The rijndael block cipher: AES proposal. URL:

http://csrc.nist.gov/encryption/aes/, 2001.

[31] S. Debray and W. Evans. Profile-guided code compression. InProceedings of the

2002 ACM SIGPLAN Conference on Programming Languages Design and Imple-

mentation, pages 95–105, June 2002.

[32] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for code

compression.ACM Transactions on Programming Languages and Operating Sys-

tems, 22(2):378–415, March 2000.

[33] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and

Joseph A. Fisher. Deli: a new run-time control point. InProc. of 35th Intl. Symp. on

Microarchitecture, pages 257–268, Nov. 2002.

[34] K. Diefendorf. K7 challenges Intel.Microprocessor Report, 12(14), Nov. 1998.

[35] K. Ebcioglu and E. Altman. DAISY: Dynamic Compilation for 100% Architectural

Compatibility. In Proc. 24th International Symposium on Computer Architecture,

pages 26–38, Jun. 1997.

[36] J. Ernst, W. Evans, C. Fraser, S. Lucco, and T. Proebsting. Code compression. In

Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language De-

sign and Implementation, pages 358–365, June 1997.

[37] Erin Farquhar and Philip J. Bunce.The Mips Programmer’s Handbook. Morgan

Kaufmann, 1994.

151

[38] M. Frantzen and M. Shuey. StackGhost: Hardware facilitated stack protection. In

Proc. of 10th USENIX Security Symposium, pages 55–66, Aug. 2001.

[39] P. Glaskowsky. Pentium 4 (partially) previewed.Microprocessor Report, 14(8), Aug.

2000.

[40] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor

Mudge, and Richard B. Brown. MiBench: A free, commercially representative

embedded benchmark suite. InProc. of 4th Annual IEEE Workshop on Workload

Characterization, Dec. 2001.

[41] L. Gwenapp. Intel’s P6 uses decoupled superscalar design.Microprocessor Report,

9(2), February 1995.

[42] L. Gwenapp. Nx686 Goes Toe-to-Toe with Pentium Pro.Microprocessor Report,

14(9), Oct. 1995.

[43] L. Gwenapp. P6 Microcode can be Patched.Microprocessor Report, 11(12), Sept.

1997.

[44] T. Halfhill. Transmeta Breaks x86 Low-Power Barrier.Microprocessor Report, Feb.

2000.

[45] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access errors

in C and C++ programs. InProc. of Winter 1992 USENIX Conf., pages 125–138,

Jan. 1992.

[46] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic program in-

strumentation for scalable performance tools. InProc. of Scalable High Performance

Computing Conf., pages 841–850, May 1994.

[47] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yan-

ling Wang. Cyclone: A safe dialect of C. InProc. of USENIX Annual Technical

Conference, pages 275–288, Jun. 2002.

152

[48] R. Jones and P. Kelly. Backwards-compatible bounds checking for arrays and point-

ers in C programs. InProc. of Intl. Workshop on Automatic Debugging, pages 13–26,

May 1997.

[49] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-

injection attacks with instruction-set randomization. InProc. of 10th ACM Conf. on

Computer and Communications Security, pages 272–280, Oct. 2003.

[50] T. M. Kemp, R. K. Montoye, D. J. Auerback, J. D. Harper, and J. D. Palmer. A

decompression core for PowerPC.IBM Systems Journal, 42(6):807–812, November

1998.

[51] P. B. Kessler. Fast breakpoints: Design and implementation. InProc. of Conf. on

Programming Language Design and Implementation, pages 78–84, Jun. 1990.

[52] I. Kim and M. Lipasti. Implementing Optimizations at Decode Time. InProc. 29th

International Symposium on Computer Architecture, pages 221–232, May 2002.

[53] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution

via program shepherding. InProc. of 11th USENIX Security Symposium, pages 191–

206, Aug. 2002.

[54] D. Kirovski, J. Kin, and W. Mangione-Smith. Procedure based program compres-

sion. In Proceedings of the 30th International Symposium on Microarchitecture,

pages 204–213, December 1997.

[55] Darko Kirovski, Milenko Drini, and Miodrag Potkonjak. Enabling trusted software

integrity. In Proc. of 10th Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems, pages 108–120, Oct. 2002.

[56] K. Kissell.MIPS16: High-Density MIPS for the Embedded Market. Silicon Graphics

MIPS Group, 1997.

[57] James R. Larus and Eric Schnarr. EEL: machine-independent executable editing. In

Proc. of Conf. on Programming Language Design and Implementation, pages 291–

300, Jun. 1995.

153

[58] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A tool for evaluating

and synthesizing multimedia and communications systems. InProceedings 30th

International Symposium on Microarchitecture, pages 330–335, December 1997.

[59] C. Lefurgy, P. Bird, I.-C. Cheng, and T. Mudge. Improving Code Density Using

Compression Techniques. InProc. 30th International Symposium on Microarchitec-

ture, pages 194–203, Dec. 1997.

[60] C. Lefurgy, E. Piccininni, and Trevor Mudge. Reducing code size with run-time

decompression. InProceedings of the 6th International Symposium on High-

Performance Computer Architecture, pages 218–227, January 2000.

[61] H. Lekatsas, J. Henkel, and W. Wolf. Code compression for low power embedded

system design. InProceedings 36th Design Automation Conference, pages 294–299,

June 2000.

[62] K. M. Lepak and M. H. Lipasti. On the value locality of store instructions. InProc.

27th Intl. Symp. on Computer Architecture, pages 182–191, Jun. 2000.

[63] S. Liao, S. Devadas, and K. Keutzer. A text-compression-based method for code

size minimization in embedded systems.ACM Transactions on Design Automation

of Electrical Systems, 4(1):12–38, January 1999.

[64] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-

ing customized program analysis tools with dynamic instrumentation. InProc. of

Conf. on Programming Language Design and Implementation, Jun. 2005.

[65] John P. McGregor, David K. Karig, Zhijie Shi, and Ruby B. Lee. A processor ar-

chitecture defense against buffer overflow attacks. InProc. of IEEE Intl. Conf. on

Information Technology: Research and Education, pages 243–250, Aug. 2003.

[66] R. Nair and M. Hopkins. Exploiting Instruction Level Parallelism in Processors by

Caching Scheduled Groups. InProc. 24th International Symposium on Computer

Architecture, pages 13–25, Jun. 1997.

154

[67] Sang-Joon Nam, In-Cheol Park, and Chong-Min Kyung. Improving dictionary-based

code compression in VLIW architectures.IEICE Transactions on Fundamentals,

E82-A(11):2318–2324, November 1999.

[68] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe

retrofitting of legacy code. InProc. of 29th Symp. on Principles of Programming

Languages, pages 128–139, Jan. 2002.

[69] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-

work. In Proc. of Workshop on Runtime Verification, Jul. 2003.

[70] Richard Phelan. Improving ARM code density and performance. Technical report,

Advanced RISC Machines Ltd., June 2003.

[71] Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent advances in

exploiting buffer overruns.IEEE Security and Privacy, 2(4):20–27, Jul./Aug. 2004.

[72] T. Rauscher and A. Argawala. Dynamic problem-oriented redefinition of com-

puter architecture via microprogramming.IEEE Transactions on Computers, C-

27(11):1006–1014, 1978.

[73] Ted Romer, Geoff Voelker Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,

Brian N. Bershad, and J. Bradley Chen. Instrumentation and optimization of

Win32/Intel executables using etch. InProc. of USENIX Windows NT Workshop,

pages 1–8, Aug. 1997.

[74] J. B. Rosenberg.How Debuggers Work: Algorithms, Data Structures, and Architec-

tures. John Wiley and Sons, 1996.

[75] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow detector. InProc.

of 11th Network and Distributed Systems Security Symposium, Feb. 2004.

[76] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-

derson. Eraser: A dynamic race detector for multi-threaded programs.ACM Trans-

actions on Computer Systems, 15(4), November 1997.

155

[77] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta:

A low overhead, software-only approach for supporting fine-grain shared memory.

In Proceedings of the Seventh International Conference on Architectural Support for

Programming Languages and Operating Systems, Oct. 1996.

[78] Kevin Scott and Jack Davidson. Strata: A software dynamic translation infrastruc-

ture. InProc. of Workshop on Binary Translation, Jul. 2001.

[79] Kevin Scott and Jack Davidson. Safe virtual execution using software dynamic trans-

lation. InProc. of Annual Computer Security Application Conf., pages 209–218, Dec.

2002.

[80] J. Seward. Valgrind. URL:http://valgrind.kde.org/.

[81] Richard L. Sites, editor.Alpha architecture reference manual. Digital Press, 1992.

[82] Amitabh Srivastava and Alan Eustace. ATOM: a system for building customized

program analysis tools. InProc. of Conf. on Programming Language Design and

Implementation, pages 196–205, Jun. 1994.

[83] G. Edward Suh, Jae W. Lee, and Srinivas Devadas. Secure program execution via

dynamic information flow tracking. InProc. of 11th Intl. Conf. on Architectural

Support for Programming Languages and Operating Systems, pages 85–96, Oct.

2004.

[84] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability

of commodity operating systems. InProc. of 19th ACM Symp. on Operating Systems

Principles, Oct. 2003.

[85] T. Szymanski. Assembling code for machines with span dependent instructions.

Communications of the ACM, 21(4):300–308, April 1978.

[86] C. A. Thekkath and H. M. Levy. Hardware and software support for efficient excep-

tion handling. InProc. of 6th Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems, pages 110–119, Oct. 1994.

156

[87] Nathan Tuck, Brad Calder, and George Varghese. Hardware and binary modification

support for code pointer protection from buffer overflow. InProc. of 37th Intl. Symp.

on Microarchitecture, pages 202–220, Dec. 2004.

[88] J. Turley. Alpha Runs X86 Code with FX!32.Microprocessor Report, 10(3), Mar.

1996.

[89] R. Wahbe. Efficient data breakpoints. InProc. of 5th Intl. Conf. on Architectural

Support for Programming Languages and Operating Systems, pages 200–212, Oct.

1992.

[90] R. Wahbe, S. Lucco, and S. L. Graham. Practical data breakpoints: Design and

implementation. InProc. of Conf. on Programming Language Design and Imple-

mentation, pages 1–12, Jun. 1993.

[91] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient

software-based fault isolation. InProc. of 14th ACM Symp. on Operating Systems

Principles, Dec. 1993.

[92] S. Wilton and N. Jouppi. An enhanced access and cycle time model for on-chip

caches. Technical report, DEC Western Research Laboratory, 1994.

[93] Tilman Wolf and Mark Franklin. CommBench – A telecommunications benchmark

for network processors. InProc. of IEEE Intl. Symp. on Performance Analysis of

Systems and Software, Apr. 2000.

[94] A. Wolfe and A. Chanin. Executing compressed programs on an embedded RISC

architecture. InProceedings of the 25th International Symposium on Microarchitec-

ture, pages 81–91, December 1992.

[95] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, and Ravishankar K. Iyer. Architecture

support for defending against buffer overflow attacks. InProc. of EASY-2 Workshop,

Oct. 2002.

[96] S.-H. Yang, M. Powell, B. Falsafi, and T. Vijaykumar. Exploiting choice in resizable

cache design to optimize deep-submicron processor energy-delay. InProceedings

157

8th International Symposium on High Performance Computer Architecture, January

2002.

[97] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient architectural

support for software debugging. InProc. 31st Intl. Symp. on Computer Architecture,

pages 224–235, Jun. 2004.

[98] C.B. Zilles, J.S. Emer, and G.S. Sohi. The use of multithreading for exception han-

dling. In Proc. 32nd Intl. Symp. on Microarchitecture, pages 219–229, Nov. 1999.

[99] C.B. Zilles and G.S. Sohi. A programmable co-processor for profiling. InProc. 7th

International Symposium on High Performance Computer Architecture, 2001.

158

	Acknowledgements
	Introduction
	Customizing Programs
	Customization Mechanisms
	DISE
	Example DISE Transformations
	Contributions
	Differences from Previous DISE Publications
	Overview

	Related Work
	Translation Mechanisms
	Compiler
	Static Binary Rewriter
	Software Dynamic Translator
	Hardware Translator

	Ad-Hoc Hardware Widget
	Decoder-Based Macro Expansion
	Summary

	DISE Architecture
	Functionality
	Instruction Matching
	Instruction Replacement

	Interface and System Architecture
	Representing Patterns
	Representing Replacement Sequences
	Adding/Removing Specifications
	Constructing Specifications
	ISA Extensions
	Operating System Support

	Summary

	DISE Microarchitecture
	Microarchitectural Implementation
	DISE Engine
	Pipeline Organization
	DISE Control Flow
	Other Microarchitectural Changes

	Evaluation of the Microarchitecture
	Methodology
	Transformation Overhead
	Sensitivity Analysis

	Summary

	Debugging with DISE
	Interactive Debugging Background
	Debugging with DISE
	Breakpoints
	Watchpoints
	Conditionals
	Discussion

	Evaluation of DISE Debugging
	Unconditional Watchpoints
	Conditional Watchpoints
	Number of Watchpoints
	Implementation Effects

	Related Work in Debugging
	Summary

	Code Compression with DISE
	Dynamic Code Decompression Background
	DISE-Based Code Compression
	Dynamic Decompression
	Compression Algorithm

	Evaluation of DISE Decompression
	Methodology
	Compression Effectiveness
	Sensitivity Analysis
	Dictionary Programmability
	Performance Impact
	Energy Implications

	Related Work in Code Compression
	Summary

	Security with DISE
	DISE-Based Attack Detection
	Return Address Protection
	Pointer Protection

	Evaluation of DISE-Based Attack Detection
	Methodology
	Protection Effectiveness
	Performance Overhead
	Customizing Attack Detection

	Related Work in Software Security
	Summary

	Conclusions
	DISE Summary
	Future Directions

