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Abstract

Achieving Robust Performance in Parallel Programming Languages

E Christopher Lewis

Chair of Supervisory Committee:

Professor Lawrence Snyder
Department of Computer Science and Engineering

Despite more than two decades of research effort, the question remains: how can we realize

the potential of large-scale parallel machines? It can be done now, but only at great expense (i.e.,

development time and effort) and with limited portability, rendering the exploitation of parallelism

impractical for most users. Advanced–ZPL (A–ZPL) is a parallel programming language intended to

address this problem. It’s design was guided by a predictive performance model that clearly defines

the role of the programmer and the compiler, called the programmer-compiler separation. The

former is responsible for abstract parallel and sequential algorithmic issues, while the latter manages

the tractable elements of mapping abstract representations to a particular machine. This dissertation

evaluates the design and implementation of A–ZPL in the light of this design criteria. Specifically,

we examine two aspects of the language and the compiler implications: efficient loop generation

and pipelining wavefront computations. We find the language is highly effective both relatively and

absolutely as a direct consequence of considering the programmer-compiler separation.
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Chapter 1

INTRODUCTION

Despite more than two decades of research effort, the question remains: how can we realize the

potential of large-scale parallel machines? Countless parallel platforms have been constructed, and

particular applications have demonstrated each machine’s peak performance but only after great de-

velopment effort. A general and truly practical system for parallel development has yet to emerge.

Although it has been long-held that parallelism is the preeminent method for improving the per-

formance of future systems, significant machine and human resources are currently wasted in pur-

suit of parallelism. New and effective parallel programming techniques are essential for exploiting

parallelism. The following excerpt from recent Compaq AlphaServer SC promotional literature

characterizes the current morass of approaches to parallel programming [Hig00].

Typically, programs will be written using Compaq FORTRAN, Compaq C, or Compaq

C++. Compaq Fortran and Compaq C both include support for the industry-standard OpenMP

directives, which are widely used for parallel development on shared-memory SMP systems.

Most large-scale jobs that use the full capability of the AlphaServer SC system will be

programmed using a message-passing model. . . via the Message Passing Interface (MPI) li-

brary. In some cases, higher performance will be achieved through the deployment of a hybrid-

programming model, where a set of shared address space threaded processes (written, for ex-

ample, with OpenMP) pass messages via MPI. For the highest possible performance, but at

the expense of additional complexity, programmers can use the shared-memory Shmem facility

to take the fullest advantage of the AlphaServer SC Interconnect’s extremely low-latency one-

sided communication capability. Yet another alternative. . ., the Compaq FORTRAN compiler

includes High Performance Fortran (HPF).

As implied by the excerpt, users must weigh poorly defined issues—such as desired perfor-

mance, the programming effort they are willing to expend, and scale of application—before select-

ing a system for developing a parallel application. This state of affairs renders parallel programming

impractical for most users. Our goal is a system for practical parallel programming. The remainder
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of the introduction examines the impediments to practical parallel programming, presents a gen-

eral approach to addressing the impediments, and introduces an instantiation of this approach in the

Advanced-ZPL parallel programming language.

1.1 Impediments to Practical Parallel Programming

Good execution performance is the virtually unanimous goal of those who use parallelism. But

most potential users lack the resources (time, programmers, knowledge of parallel programming and

machines, etc.) required to pursue parallel performance when it comes at the expense of portability

and usability. Thus, for a parallel programming system to be practical, it must provide performance,

portability, and usability.

A programming system is considered portable when the mutually relative performance of any

two codes is roughly independent of the target architecture. For example, in the sequential domain,

the C programming language is considered portable; for the manifestly superior of two programs

will be better on most—if not all—serial machines. Conversely, languages such as Prolog are less

portable, for performance may vary widely—from fast to intractable—between different compilers

or run-time systems. That an application merely runs correctly on different machines is a trivial form

of portability; thus, we use the more meaningful definition that includes performance. A sufficient

number and diversity of parallel platforms exist and are being developed that portability represents

a significant practical concern. Just as most users and developers of serial machines are unwilling

to invest in software that dies with the machine on which it is originally implemented, so, too, are

users of parallel machines.

Usability is another important property of a programming system. One system is considered

more usable than another when the former requires the dedication of less programming effort to

particular implementation details so that the programmers are freed to reason about their codes at a

higher level. Thus, C has a higher degree of usability than assembly language, for the latter requires

the programmer to manage details such as register allocation, explicit call-stack management, and

so on. A parallel programming system that lacks usability is unlikely to achieve general user accep-

tance. Although some will demand parallelism at any cost (even with poor usability), they will be

members of a community not large enough to support code reuse and the development of advanced
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tools and environments. Performance at the expense of usability and portability greatly limits the

value of parallelism.

It would appear that performance, usability, and portability are all at odds with each other. The

PUP Triangle in Figure 1.1 graphically depicts their conflicting relationships. In the diagram, the

three properties—portability, usability, and performance—are arranged in a triangle, and arrows are

labeled with a description of the principal means for achieving the properties to which they point.

Opposing arrows denote conflicting means.

Consider the issues of performance and portability. Good performance is often achieved by

specializing a program to particular architectural features. For example, the Compaq AlphaServer

SC—the subject of the quotation, above—and the Cray T3E provide low-latency, one-sided commu-

nication; thus, one would like to use the Cray Shared Memory Access Library (Shmem) to exploit

it [BK94]. This is not a simple matter of selecting a particular library; rather, it is intimately tied

to the code structure ultimately developed. At the same time, portability is often achieved by gen-

eralizing a code’s implementation and operation. Specialization and generalization are clearly at

odds, implying the same for performance and portability. In the example, a well designed program

written using Shmem may perform well on the Cray T3E, but it will almost certainly have abysmal

performance on a machine with different features, such as the IBM SP, which has a higher latency

and lower bandwidth network than the T3E or the AlphaServer.

Next, consider performance and usability. Specialization for performance often requires an

extensive understanding of esoteric, machine-specific features. But usability is best achieved via

simplicity of representation. The details of specialization put performance at odds with usability.

Finally, consider usability and portability. Usability is best achieved by limiting the complexity

of the programmer’s view of a computation, while portability is best achieved via generalization.

Generalization for portability—with performance—serves to make the performance of an applica-

tion insensitive to particular machine features. Such generalization requires a deep understanding

of the abstract properties of parallel machines. This knowledge and the effort to exploit it represent

details of implementation rather than algorithmic fundamentals. For this reason, simplification and

generalization—and usability and portability—are at odds.

To be concrete, the following exemplify the tension between portability and both performance

and usability. First, the Message Passing Interface (MPI) library is billed as a portable system for
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Figure 1.1: The PUP Triangle depicts the conflicting relationships of performance, usability, and
portability. Each arrow is labeled with a description of the principal means for achieving the property
to which it points. Opposing arrows denote conflicting means.

parallel programming [SOHL�98]; it is portable in the sense that an application will run correctly

on any machine with minimal modification. MPI provides the union of all major communication

mechanisms; thus, a programmer may select the best ones for a particular machine to achieve good

performance on that machine. Unfortunately, this kind of specialization prohibits portable perfor-

mance, as argued above. Next, a principal benefit of High Performance Fortran (HPF) is that all

legal Fortran programs are also legal HPF programs, a relationship intended to make the language

more usable [Hig97]. Unfortunately, a particular HPF compiler may or may not generate an efficient

parallel implementation of the Fortran code; thus, the language rates poorly on both performance

and portability.

1.2 An Approach to Practical Parallel Programming

We address these impediments to practical parallel programming in the integrative design of

language-level abstractions, compiler technology, and predictive performance models. Roughly

speaking, language-level abstractions address the usability goal of simplification. With well de-

signed abstractions, the programmer is presented with a computational view that hides complex

details. It is then the role of the compiler to map these abstractions to a machine, specializing them
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Figure 1.2: Depiction of the relationship between the accuracy and portability of predictive perfor-
mance models.

to a particular architecture. The tension between performance and usability persists; thus, the de-

sign of abstractions and compiler technology must be guided by a portable predictive performance

model.

Predictive performance models play an important role in practical parallel programming, as

demonstrated in related work [Ngo97, CCL�98b]. A predictive performance model permits pro-

grammers to reason about the expected performance behavior of their codes, guiding them to effi-

cient solutions. Nevertheless, there is a hazard to predictive performance models. As one becomes

more certain of exactly how a code will perform on a particular machine, the prediction becomes

increasingly dependent on the properties of that machine, as typified by the LogP model [CKP�93].

Figure 1.2 illustrates this phenomenon. Accuracy and portability are the end points of a continuum,

and the goal is to find language features and abstractions that predict performance only to the degree

necessary, maintaining a balance between predictability and portability. Only then will a predictive

performance model be effective, independent of the target machine (i.e., portable).

How do we decide the “degree necessary”? The work in this dissertation is guided by the

two principal abstract properties defined by the CTA parallel machine model [Sny86]: parallelism

and locality. Clearly, parallelism is essential in exploiting parallel machines. Equally important is

locality, for all large-scale parallel computers consist of multiple processing elements separated by a

relatively slow—as compared to processor performance—network. Locality minimizes dependence

on the network, reducing overhead that is not fundamental to the computation.1 A language that

1Although programming languages and computer architectures have been proposed to hide network latency, eliminat-
ing the significance of locality, no such system has yet conclusively obviated locality [ACC�90, Val90]
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permits a programmer to reason about a code’s parallelism and locality is well equipped to provide

a predictive performance model that is both accurate and portable.

Just as fundamental parallel properties should be made apparent to programmers, secondary

details must be abstracted in support of usability. Tedious, yet tractable, details of parallel program-

ming should be relegated to the compiler, just as in the C programming language where details such

as register allocation and instruction scheduling are left to a compiler. Thus, the programmer and

the compiler have specific and distinct roles.

� The programmer is responsible for abstract parallel and sequential algorithmic issues.

� The compiler manages the tractable elements of mapping abstract representations to a partic-
ular machine.

We call the division of labor between programmer and compiler programmer-compiler sepa-

ration, for it determines the responsibilities of each entity. In our division, a portable predictive

performance model guides the design of abstractions and compiler technology, defining the roles of

the programmer and compiler. A key property of this division is that the compiler is responsible

for “tractable elements� � �” This stands in stark contrast to the large body of research in automatic

parallelization, which advocates complete parallelization by compiler. The jury is still out on the

efficacy of automatic parallelization, but a practical system has yet to be constructed despite more

than two decades of effort. This dissertation and prior work argue that automatic parallelism is in-

feasible, for in the general case a compiler must discover new parallel algorithms from sequential

representations, which is not manifestly tractable.

Nevertheless, the compiler’s role is not trivial. This dissertation demonstrates that despite re-

lieving the compiler of discovering parallelization, it must still perform sophisticated analyses and

transformations in order to realize efficient and portable parallel code.

1.3 Practical Parallel Programming with Advanced–ZPL

The Advanced–ZPL programming language (A–ZPL) embodies the above approach to practical

parallel programming. A–ZPL is an array-based language designed from first principles to solve

data-parallel scientific and engineering problems [Sny99]. A–ZPL (the successor to ZPL) has been

in public release since 1997 and has seen production use by applied mathematicians, astronomers,
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civil engineers, computer scientists, and physicists, among others. The A–ZPL language abstrac-

tions permit programmers to reason about the parallel and locality implications of their code, for

the abstractions are subject to a portable predictive performance model. At the same time they are

sufficiently abstract and intuitive that the language is easy to use as compared to the alternatives.

This dissertation examines representative portions of the A–ZPL language and its compiler and

evaluates them in the light of programmer-compiler separation guided by a portable predictive per-

formance model. We explore elements of the language that demonstrate the role of programmer-

compiler separation. On one hand, we examine a complex task that is entirely managed by the

compiler: the generation of loop nests from array statements. On the other hand, we consider a cir-

cumstance where new language abstractions dramatically improve the efficacy of language: support

for pipelining wavefront computations. In the process, we illustrate how A–ZPL simultaneously

achieves performance, usability, and portability.

Loop generation is a performance-critical aspect of array language compilation. Effective loop

generation in A–ZPL consists of two components, statement fusion and array contraction. Statement

fusion is analogous to loop fusion except that it is performed by the compiler on array statements

before they have been converted to scalar loop nests. Array contraction is a program transformation

enabled by statement fusion that permits a single scalar value to be used in place of an array. To-

gether, these optimizations dramatically improve data cache behavior and performance—frequently

by 25% and in some cases by a factor of 10—in most programs. In addition, array contraction re-

duces memory consumption, permitting larger problems to be solved in a fixed-sized memory. We

argue that the task of loop generation is eminently tractable for the compiler, and our experiments

support this claim.

Wavefront computations occur frequently in scientific programs, for example in solvers and

dynamic programming codes. We show that fully automatic approaches to parallelizing such codes

are impractical. We describe the design and implementation of a general language abstraction that

consistently admits efficient pipelined parallel implementations of wavefront computations, and we

show that this approach consistently performs better than the alternatives.

This dissertation is an in-depth study of the development of language-level abstractions and

compiler technology guided by portable predictive performance models. All models are well de-

fined, and all abstractions and compiler techniques are implemented and evaluated in the context of
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a complete, practical, parallel programming language.

1.4 Contributions

The work in this dissertation makes the following contributions.

� It uses the A–ZPL parallel programming language to illustrate the value of programmer-
compiler separation guided by a portable predictive performance model.

� It motivates and justifies particular A–ZPL language design decisions in support of
programmer-compiler separation considerations.

� It presents and experimentally evaluates a unique technique for array contraction.

� It introduces and evaluates a novel language abstraction for representing wavefront computa-
tions for pipelined parallel execution.

� It quantitatively and qualitatively evaluates the role of array contraction and the new abstrac-
tions in the design of a significant application.

� And it describes core elements of the A–ZPL compilation process, including efficient loop
generation for array statements.

1.5 Thesis Outline

The remainder of this document is structured as follows. The next chapter gives an overview of

the A–ZPL programming language, and Chapter 3 presents related work and background, including

discussions of predictive performance models, the A–ZPL performance model, our A–ZPL com-

piler, and A–ZPL’s genesis. Chapter 4 describes and evaluates array statement fusion and array

contraction in the A–ZPL compiler. Chapter 5 presents an A–ZPL language abstraction for the un-

ambiguously parallel representation of pipelined parallel wavefront computations. Chapter 6 is a

case study of the ASCI SWEEP3D benchmark [Accb], serving as a complete description of devel-

oping an entire A–ZPL application that benefits from the work in Chapters 4 and 5 as well as the

rest of the A–ZPL system. The final chapter gives conclusions and proposes future work.
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Chapter 2

THE A–ZPL LANGUAGE

This work has been performed in the context of the Advanced–ZPL (A–ZPL) parallel program-

ming language, developed by the author and colleagues beginning in 1993 and continuing to the

present time. This chapter introduces the basic concepts of the A–ZPL language. Only those facets

of the language pertinent to this document are introduced, but complete language descriptions ap-

pear in the literature [Sny99, CCL�00].

The simple, yet complete, A–ZPL program that appears in Figure 2.1 serves as a running ex-

ample in this chapter. As is evident from the sample code, A–ZPL has many of the same data

types—boolean, integer, floating point, record, array—and control structures—if, for, while,

repeat—found in standard imperative languages such as C and Pascal. In addition, it includes a

typical assortment of arithmetic and logical operators.

Rather than reiterate these commonalities, this chapter highlights the distinguishing facets of

A–ZPL. The following sections discuss the concepts of regions, region operators, array operators,

and overall program structure; and the final section summarizes.

2.1 Regions

The fundamental concept of the language is the region, which encapsulates parallelism, describes

data distribution, and provides concise and readable syntax [CLLS99]. A region is an index set. For

example, the following declaration defines a region R that includes the indices in the set � �1�1��
�1�2�� � � � �1�n� � � � �n�1���n�2�� � � � �n�n��.

region R = [1..n,1..n];

As shown on line 6 of Figure 2.1, the region bounds can be more involved. Regions may have any

static rank, and the upper and lower bounds of each dimension must be integral values. Mechanisms

for specifying strided, hierarchical, and sparse regions are described elsewhere [Sny99, CDS00,
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1 program thinner;
2
3 config var m: integer = 10; -- runtime constants
4 n: integer = 20;
5
6 region R = [-m/2..+m/2,-n/2..+n/2]; -- declarations
7
8 direction north = [-1, 0]; east = [ 0,+1];
9 south = [+1, 0]; west = [ 0,-1];

10
11 procedure skeletonize(var S: [R] integer);
12 var Obj, T, Temp: [R] integer;
13 err: integer;
14 [R] begin
15 [east of R] S := 0; -- initialize boundary conditions
16 [west of R] S := 0;
17 [north of R] S := 0;
18 [south of R] S := 0;
19
20 [R] Obj := S; -- copy input image
21 repeat -- iterate over the thinning algorithm
22 Temp := min(min(S@north,S@east),min(S@south,S@west));
23 T := Obj + Temp;
24 err := max<< abs(S-T);
25 S := T;
26 until err = 0;
27
28 S := (S>=S@north) & (S>=S@east) & (S>=S@south) & (S>=S@west) & (S!=0);
29 end;
30
31 procedure thinner(); -- entry procedure
32 var S: [R] integer;
33 objfile: file;
34 [R] begin
35 objfile := open("object.dat", "r");
36 read(objfile, S);
37 close(objfile);
38 skeletonize(S);
39 writeln("%d ":S);
40 end;

Figure 2.1: Complete, sample A–ZPL program. This program computes the shape skeleton (medial
axis) of a two dimensional object that is represented as non-zero pixels. The algorithm takes as
input a discretized representation of an object and iteratively performs volume thinning [BB82] by
nearest neighbor minimization until only the skeleton remains.

Cha00, CLS98]. Once defined, regions are used to declare arrays, specifying the size and shape of

these arrays. The following code fragment from line 12 of Figure 2.1 declares Obj, T, and Temp to

be two-dimensional integer-typed arrays with memory allocated for each index in region R.

var Obj, T, Temp: [R] integer;

Regions are also used to specify indices for array operations. For example, line 20 of the figure

shows how array assignment generalizes scalar assignment.

[R] Obj := S;
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Elements of the right-hand side, whose indices are given by the region R, are assigned to their

corresponding elements on the left-hand side, whose indices are again given by the same region.

Here, we say that Line 20 is in the scope of region R because R is attached directly to the statement,

and hence both the Obj and S arrays use the same region. In general, a d-dimensional region

defines indices for all d-dimensional array expressions in its scope. Regions also apply to compound

statements, so Line 14 defines a scope that applies to the entire body of the procedure, except for

those that are within the scope of more deeply nested regions. Finally, regions are dynamically

scoped, so procedures can inherit regions from the scope of their call site. As described below, other

constructs, such as the reduction operator, require two regions, while expressions involving only

scalar variables require none.

Regions are often named for convenience and clarity, but this is not required. For example, the

following lines might be used to assign zeroes to the upper triangular portions of an n�n array.

for i := 1 to n do
[i,i..n] A := 0;

end;

In specifying a region, elided dimensions are inherited from the dynamically enclosing region scope.

For example, [i,] refers to row i of the enclosing region.

A slightly more complicated array statement is given on Line 23,

T := Obj + Temp;

which performs an array addition and then assigns the corresponding sums to elements of T. Array

addition generalizes the scalar + operator by summing corresponding elements of its array operands,

so the result of evaluating Obj+Temp is an array of sums. In general, any scalar operation or

procedure may be used with scalar arguments in this way, as seen in Line 22’s application of the

scalar min function to array operands. This is called functional promotion. Similarly, when a scalar

is used in a context where an array is expected, the scalar implicitly becomes the rank and size of

the expected array, as exemplified by the assignment of scalar 0 into the east boundary of array S in

line 15. This is called scalar promotion.
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north = [-1, 0];

ne    = [-1, 1];

east2 = [ 0, 2];

east  = [ 0, 1];

[north of R] [east of R] [ne of R] [east2 of R]

Figure 2.2: Examples of the of region operator. Shading represents region R, and the outlined area
represents the region specified beneath each example.

2.2 Region Operators

To simplify the specification of regions, A–ZPL provides a number of operators that describe new

regions relative to existing ones. Regions are often constructed using directions, which are user-

defined vectors. Line 8 shows the definition of two directions, which are used to describe the

geometric relationships used in this program.

direction north = [-1, 0]; east = [ 0,+1];

Once defined, directions can be used with the various region operators such as the of, in, and

at operators, here informally defined. The of operator applies a vector to a region of the same

rank and produces a new region that is adjacent to the original region in the direction of the vector.

For example in Figure 2.1, [north of R] refers to the row of indices above R. Figure 2.2 shows

examples of how the magnitude and signs of the direction vector determine the size and placement

of the resulting region.

Lines 15–18 of the example show how boundary conditions are defined. Two points are notewor-

thy. First, A–ZPL simplifies memory allocation by implicitly defining storage for boundary values,

which are defined to be any portion of an array that is initialized in the scope of a region that uses

an of operator. Thus, array S is allocated sufficient memory to store elements in [east of R],

[west of R], [north of R], and [south of R] despite the fact that it is declared using re-

gion R. The second point is that boundary conditions are typically difficult to deal with in scientific

computations because they make it impossible to treat the entire computational space uniformly. A–

ZPL provides support for boundary conditions through the use of the wrap and reflect statements,

which can be used to initialize periodic and mirrored boundary conditions. Wrap and reflect are

described elsewhere [Sny99]. Furthermore, the use of regions allows boundary condition code to be
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[R]

east  = [ 0, 1];

north = [-1, 0];

ne    = [-1, 1];

[R at north] [R at east] [R at ne]

Figure 2.3: Examples of the at region operator. Shading represents region R, and the outlined area
represents the region beneath each example.

clearly separated and identified, as evident in Figure 2.1.

The in operator is the dual of the of operator, producing a region that is inside the original

region and adjacent to the border in the direction of the vector. For example, [north in R] refers

to the first row of indices inside of region R.

Finally, the at operator translates an index set by some specified vector without changing the

size or shape of the original region. For example, the region [R at north]refers to the translation

of the R region by one in the north direction. In general, the at operator produces a new region

by adding the specified direction to each index of the specified region. Examples are given in

Figure 2.3.

2.3 Array Operators

Regions govern the referenced indices for entire statements, but array operators adjust the indices

for individual array references. The at region operator has an alternate form, @, that can be applied

to individual arrays, the only region operator for which this is true. For example, the statement on

line 22 computes, for each point, the minimum of its four neighboring elements.

Temp := min(min(S@north,S@east),min(S@south,S@west));

The right-hand side of this statement first uses the built-in min function to compare corresponding

elements of array S’s north and east neighbors. Here, correspondence is natural; for example, the

upper left-hand elements of arrays S@north and S@east correspond. The result of this function

evaluation is an array whose values are the minimum between S’s north and east neighbors.

The remainder of the right-hand side operates analogously, minimizing over the south and west
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arrays, and then combining these results into a single array of minimum values.1 As mentioned

earlier, the min function is a scalar C function that is promoted to operate on each element of an

array expression.

In addition to providing mechanisms for simplifying the specification of array indices, A–ZPL

provides a number of array operators, such as reduce and scan operators, that simplify the manip-

ulation of arrays. The reduce operators perform an associative, commutative operation, such as +

or max, on all elements of an array, producing a single scalar. Line 24 shows an example of the

max-reduce operator, which takes the largest element of the absolute values of S-T and assigns the

result to the scalar variable err.

err := max<< abs(S-T);

The scan operators apply an associative, commutative operator to an array of values. The result-

ing value is an array in which each element is the reduction of all preceding elements of the array.

Scan operations are also known in the literature as the parallel prefix [LF80, Ble90]. The syntax of

a scan operator is shown below, where we assume that A and B have been declared to be of the same

rank.

A := max|| B;

The syntax of the reduce, scan and flood operators (defined below) are chosen to remind users that

reduce (<<) produces a smaller result, scan (||) produces a result of the same size and shape, and

flood (>>) produces a larger result.

Reductions collapse all dimensions of an array to a single scalar, while scans perform the parallel

prefix operation across all dimensions of an array. A–ZPL provides variations of these operations,

known as partial reductions and partial scans, which operate over a subset of the dimensions. For

example, the following declarations and statement perform a partial reduction of the B array and

assign the result to the array A.

region I = [1..n,1 ];
IJ = [1..n,1..n];

[I] A := +<<[IJ] B;

1Lines 22 and 23 would more naturally be combined into a single statement, eliminating the use of theTemp array, but
the statement was split for pedagogical reasons. Nevertheless, the compiler eliminates such temporaries as described
in Chapter 4.
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[If] Af := >>[I] B;

region I  = [1..n,1   ];
IJ = [1..n,1..n];
If = [1..n,*   ];

var A,B : [IJ] double;
Af : [If] double;

[IJ] A := >>[I] B;B

(b)(a) (c) (d)

⇐ ⇒

⇐ ⇒

⇐ ⇒

⇐ ⇒

Figure 2.4: Illustration of flooding. (a) and (b) give declarations and initial value of array B. (c)
and (d) show effects of flooding. In (d), the target array is distributed across a 2�2 processor grid
and it’s second dimension is declared floodable, so only the defining values are represented on each
processor.

The source region, IJ, applies to the B array, and the destination region I applies to the A array.

Here, the region names are chosen to indicate that the region IJ includes all indices in a three-

dimensional region, while the region I includes a plane of the same region. Thus, the source and

destination regions combine to indicate that the second dimension is the collapsed dimension.

The flood operator (>>) performs the dual of reduction, replicating a slice of an array. Like

partial reductions, the flood operator encodes a region, specifying the portion of the source array to

be replicated. As always, the enclosing region specifies the target indices. For example—assuming

the declarations given in Figure 2.4(a)—Figures 2.4(b) and (c) illustrate the replication of the first

column (defined by region I) of array B by flooding. Again, the source and destination regions

combine to indicate that the replication is across the second dimension. In order to conserve mem-

ory, an array dimension may be declared as flooded (via the token *), indicating that all data along

that dimension will have only a single value. Storage is only allocated for the defining values, as

illustrated in Figure 2.4(d), but the array can be referenced as if it is a normal array.

It is often convenient to replicate data dimensionally, like flood, but only on a per-processor

basis. Thus, an array dimension may be declared a region-grid, or r-grid, via the token ::. For

example, the following declaration produces a row vector unique to each processor row.

var X : [::,1..n];

The most general of A–ZPL’s array operators is the remap operator (#), which permits arbitrary

array-level indexing of array data. For example, consider the following statement, where A, B, I,
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and J are two-dimensional arrays.

[R] A := B#[I,J];

The right operand ([I,J] in this case) is a sequence of integer arrays that are used to index into

the left operand (B). In this case, arrays I and J define the source indices for the first and second

dimensions, respectively, gathering elements from array B to array A. When a remap operator

appears on the left-hand side of an assignment, a scatter is performed. Assignment operators such

as += or *= are used to accumulate multiple values that scatter to the same index. Otherwise, an

arbitrary value persists when there is a conflict. For example, if integer arrays I and J containing

only ones, the following statement has the effect of assigning the product of the region R elements

of B to index �1�1� of A.

[R] A#[I,J] *= B;

The remap operator can be used to perform a matrix transpose as follows.

[R] A := B#[Index2,Index1];

Here, Index1 and Index2 are built-in A–ZPL arrays whose elements contain their row index and

column index, respectively. These arrays are defined to be conformable with any array, and are

generalized to all dimensions that appear in a program.

2.4 Overall Program Structure

The overall structure of an A–ZPL program is apparent in Figure 2.1. The name of the program is

given on the first line. This name is used to define the main procedure, where program execution

will begin. The top of the program contains various declarations, and this is followed by a series of

procedure definitions.

The first set of declarations specify configuration variables, which are variables whose values

are bound once at load time and remain constant thereafter. Configuration variables are useful for

specifying values of parameters that are likely to be specific to a given instantiation of a program.

These variables can be assigned default values as shown on Lines 3–4, assigned values on the

command line, or initialized through configuration files that are specified on the command line. The

next declarations define regions in terms of the configuration variables, and these are followed by
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the declaration of directions. This program has no global variables, but globals can be defined if

necessary.

The main procedure, thinner(), declares some local variables, performs I/O to initialize

data, and then performs the actual thinning by invoking the skeletonize() procedure. The

skeletonize() procedure illustrates how array parameters may be declared with specific regions

defining their size and shape. By contrast, the read() and writeln() routines can operate on

arrays of arbitrary size and shape because they were defined without providing specific regions for

their array parameters. Thus, line 34 attaches regions to the call sites of lines 36 and 39, and the

dynamic scoping of regions propagates these regions to the bodies of the I/O routines.

2.5 Summary

A–ZPL is the parallel programming language upon which the work in this dissertation builds. It

is an array language principally distinguished by its use of index sets called regions, which are

used to define arrays and specify the extent of a statements computation. Individual dimensions of

a region may be classified as flooded or r-grid, indicating single coherent or non-coherent values

along that dimension. A number of region operators are available to simplify the construction of

regions, particularly those at the boundaries. Array operators permit the modification of the indices

for a particular array reference and algebraic operations, such as reduction. The large number of

applications written in A–ZPL suggests that its design well covers the needs of the data-parallel

domain.
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Chapter 3

BACKGROUND AND RELATED WORK

High performance parallel computing is a broad discipline with an extensive history. This chap-

ter provides appropriate background and related work, setting the stage for the remainder of this

dissertation. The next two sections give the general context and summarize related parallel pro-

gramming systems. Section 3.3 discusses performance models, and the final two sections outline

the structure of the University of Washington A–ZPL compiler and give historical context.

3.1 Context

This work is conducted in the context of high performance parallel computing, where it is necessary

to achieve and sustain TeraFLOPS-scale performance. Today, performance of this magnitude can

only come from a high degree of parallelism, so it is essential that parallel machines intended for

this domain scale to potentially large numbers of processors.

Furthermore, this work concentrates on the data parallel form of parallelism. Data parallelism

arises when the same or a similar operation is applied to each element of a data set. Often, these

operations can be performed in parallel. Matrix and array-based computations are frequently data

parallel. Data parallelism is to be distinguished from task or functional parallelism, in which par-

allelism exists between portions of a computation performing different operations. Data parallel

computations are very common in science and engineering problems, because they often exploit

very large data sets over which computation is only practical with parallelism.

There exists a rough association between data and task parallelism and SIMD (single-instruction,

multiple-data) and MIMD (multiple-instruction, multiple-data) parallel machines, respectively.

SIMD machines are designed to perform the same operation (a single instruction) on multiple data

elements, so they are well equipped to exploit data parallelism. On the other hand, they can not

exploit task parallelism. MIMD machines are designed to perform different operations on multiple
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data elements; thus, they can perform either data or task parallel computations. Economic concerns

have made SIMD machines infeasible, to the point that only MIMD machines exist today. Despite

the relationship between data parallelism and SIMD machines, A–ZPL effectively exploits MIMD

machines and it provides features that support limited forms of task parallelism.

3.2 Related Parallel Programming Systems

Perhaps the best known language effort for parallel computing is High Performance Fortran

(HPF) [Hig97]. HPF was designed by extending the sequential Fortran 90 language to support

the distribution of arrays across multiple processors, resulting in parallel computation. Program-

mers may give suggestions for array alignment and distribution in the form of directives, though

their use is optional and they may be ignored by the compiler. This flexibility in implementation

has two drastic effects: (i) programmers have no direct means for determining the communication

overheads associated with their programs since communication is dependent on data distribution

and alignment, and (ii) compilers are free to distribute data as they see fit, implying that a program

which has been tuned to work well on one platform may perform terribly when compiled on another

system. This lack of a performance model in the language is completely antithetical to the notion of

portable performance.

Ngo et al. demonstrate that HPF’s failure to specify a performance model results in erratic

execution times when compiling HPF programs with different compilers on the IBM SP-2 [NSC97].

To alleviate this problem, tools such as the dPablo toolkit [AWMC�95] have been designed to give

source-level feedback about compilation decisions and program execution. However, these tools are

tightly coupled to a compiler’s individual compilation model, and therefore they do not directly aid

in the development of portable programs.

NESL [Ble92] is a parallel functional programming language. Its designers recognized that in

the parallel realm the ability to reason about a program’s execution is crucial, so a work/depth-

based performance model was designed to support this endeavor [Ble96]. Although this model well

matches NESL’s functional style and allows for coarse-grained implementation decisions, it uses

a very abstract machine model that reveals little about the mapping of NESL constructs to actual

architectures. For example, the cost of interprocessor communication is considered negligible in the
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NESL model and is therefore ignored entirely.

C� [Thi91] is an extension to the C programming language that was developed for programming

the Connection Machine. Several aspects of its design do an excellent job of making the mapping of

C� programs to the hardware transparent. For example, the Connection Machine architecture sup-

ports two general types of interprocessor communication with significantly different overheads—

grid communication and the more costly general communication. This disparity is reflected in the

language by its syntactic classification of array references as being either grid or general. Although

this does an excellent service for the Connection Machine programmer, its benefits are diminished

when C� is implemented on different architectures since they may support additional forms of com-

munication with intermediate costs, e.g., broadcasts along sub-dimensions of a processor grid.

As an alternative to parallel languages, many runtime libraries have been developed to support

the creation of portable parallel codes. As libraries, these approaches do not offer the same syntactic

benefits as languages, such as A–ZPL, and they cannot benefit from the same compiler optimizations

that a language does.

The most notable libraries are those that provide support for message passing, such the Parallel

Virtual Machine (PVM) [BD94] and the Message Passing Interface (MPI) [SOHL�98]. These li-

braries have been hailed as successes due to their widespread implementation on numerous parallel

and sequential architectures, and for the relative ease with which codes written on one architecture

can be run on another. However, the libraries are not without their drawbacks. First, they put the

entire burden of parallel programming on the users, requiring them to code at a per-processor level

and manage all memory and communication explicitly. This is tedious and error prone, and is con-

sidered by many to be equivalent to programming sequential computers in assembly language. In

addition, the libraries restrict the user to a particular paradigm of communication, which may or may

not be optimal for a given architecture [CCS98]. Although extensions to the libraries [SOHL�98]

seek to alleviate this problem by supporting a richer set of communication styles, this does not solve

the problem because to achieve optimal performance, a program would have to be rewritten for each

machine to use the interface that is most appropriate.

LPARX [KB94] is a library that supports the parallel implementation of non-uniform problems.

LPARX provides user-controlled index sets and a more general version of A–ZPL’s regions that

support set theoretic operations, such as union, intersection, and difference. LPARX programmers
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CTA Parallel Computer

Sparse Communication Network

Controller von Neumann Processors

• • •

Figure 3.1: The CTA abstract parallel machine model.

can specify the distribution of index sets to processors, relying on the runtime system to implement

transparent interprocessor communication for non-local array references. For this reason, LPARX

does not provide portable performance.

HPC++ [JGB97] extends C++ by providing class libraries to support both task and data paral-

lelism. HPC++ uses a parallel implementation of the C++ Standard Template Library to provide

parallel container classes and parallel iterators, and HPC++ uses pragmas to identify parallel loops.

HPC++ also provides support for multi-threaded programming. In short, HPC++ supports task par-

allelism and a wider range of data structures via lower-level mechanisms than those in A–ZPL.

In summary, A–ZPL can be distinguished from all these systems in that it provides portable

performance, a direct result of its portable performance model.

3.3 Modeling Parallelism

3.3.1 Background

A machine model captures the salient characteristics of a machine so that its users are presented

with an abstract and more manageable view of its operation. For example, the so-called von Neu-

mann machine model captures the salient characteristics of modern sequential computers: a stored

program, a common memory for data and code (accessible in unit time), and a CPU to perform

arithmetic and logical operations [vN45]. That a single model describes virtually all serial ma-

chines contributes directly to the portability of software. This model has persisted since the 1940s,

though data caches and instruction level parallelism are threatening its veracity.
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The CTA1 machine model is intended to serve as the parallel analog of the von Neumann ma-

chine model [Sny86]. A CTA machine (Figure 3.1) contains multiple von Neumann processors,

each with a local memory. Processors are connected via a sparse network of unspecified topology.

The latency of communication across the network is unspecified, but it is assumed to be significantly

larger than the time to perform a local memory reference. All processors are connected via a thin

channel to a controller that manages global synchronization operations. Thus, this model abstracts

the performance characteristics of parallelism and locality, without the machine dependence that

comes with undue specificity.

Machine models are too low-level for convenient programmer manipulation. The programming

model builds abstractions upon the machine model. For example, in sequential programming, the

imperative-procedural programming model [PZ96], typified by C or Fortran, provides symbolic

naming, data structures, procedures, parameters, recursion, control structures, etc. These are useful

abstractions that are not provided by the machine model directly but are important for practical

programming.

The phase abstractions programming model is a parallel analog of the imperative-procedural

programming model [Sny90, AGNS90], providing equivalent features as well as data allocation and

processor assignment information. The programming model defines a scalable unit of parallelism

that encapsulates three aspects of parallel computations—code, data and communication—so that

performance-critical characteristics of a parallel program can be adjusted for different target ma-

chines. For example, the model allows the granularity of parallelism to be easily adjusted. By

expressing the code, data and communication topology of parallel programs as independent units,

the model encourages component reuse and simplifies the tuning process. Most significantly, the

model does not obscure the underlying abstract parallel machine, the CTA [Sny93].

A–ZPL builds upon the CTA machine model and the phase abstractions programming model.

Corresponding serial and parallel machine and programming models appear in Table 3.1.

Before we describe the A–ZPL performance model, we summarize some other parallel ma-

chine models. The PRAM (parallel random-access machine) models a parallel machine with p

serial processors that have “unit-time” access to a single shared memory [FW78]. This model ob-

1CTA is an acronym for candidate type architecture. A type architecture and machine model are synonymous.
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Table 3.1: Serial and parallel models.

Serial Parallel
Machine model von Neumann CTA
Programming model Imperative-procedural Phase Abstractions
Language C, Fortran, Pascal, etc. A–ZPL

viously ignores the cost of communication between processors, which has yet—and is unlikely—to

be realized in hardware. In fact, with the PRAM, absurd conclusions may be drawn, including

constant-time sorting algorithms [Akl89]. Although the PRAM is useful in studies of the limits of

parallelism, it is not a practical tool for guiding algorithm design.

The LogP model contains P serial processors, each with a local memory, connected via a net-

work of unspecified network topology. Rather than a unit-cost memory access, the performance

characteristics are defined by four parameters: L (latency for interprocessor communication), o

(overhead or amount of time a processor is engaged in a transmission), g (gap or minimum time

between consecutive communication operations), and P (number of processors). The LogP model

has been used to predict performance with great accuracy [DCSM96, ABLZ99], but it is precisely

this accuracy that impedes portability.

The following section concretizes the above discussion, describing how A–ZPL programmers

reason about the expected performance of programs.

3.3.2 A–ZPL Performance Model

As with most array languages, the semantics of array assignment are that the right-hand side is

evaluated before it is assigned to the left-hand side, and one array statement is logically completed

before the subsequent statement is executed. Each array statement specifies a collection of opera-

tions on the elements of the statement’s arrays. This collection can logically be performed in any

order, which allows the implementation to execute the operations in parallel. Thus, the amount of

parallelism in an A–ZPL program is described by the region attached to each statement. At the

same time, these array language semantics allow programmers to reason about A–ZPL programs as
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if they were sequential programs.

To achieve parallelism, arrays are distributed across processors based on the distribution of their

defining regions. The distribution of regions is restricted to obey the invariant that interacting re-

gions are distributed in a grid-aligned fashion.

Two regions are considered to be interacting when they are both explicitly or implicitly refer-

enced in a single statement. Explicit region references are those encoded in array operators (e.g.,

partial scans and reductions) and those that specify the indices of an array statement. Implicit region

references are those that are used to declare the arrays appearing in the statement. For example, the

following statement (Figure 2.1 line 18) implicitly references region R because array S is declared

over R and explicitly references region south of R, so they are interacting regions.

[south of R] S := 0;

Grid-aligned means that if two n-dimensional regions are partitioned across a logical n-

dimensional processor grid, both regions’ slices with index i in dimension d will be mapped to

the same processor grid slice p in dimension d. For example, since R and north of R are in-

teracting, they must be grid-aligned, and therefore column i of north of R must be distributed

across the same processor column as column i of R. Moreover, grid-alignment implies that element

�i� j� of two interacting regions will be located on the same processor. This is a key property of our

distribution scheme. Note that using a blocked, cyclic, or block-cyclic partitioning scheme for the

indices of a set of interacting regions causes the regions to be grid-aligned. Our A–ZPL compiler

uses a blocked partitioning scheme by default, and for simplicity we will assume this scheme for

the remainder of this dissertation.

Once regions are partitioned among the processors, each array is allocated using the same dis-

tribution as its defining region. Array operations are computed on the processors containing the

elements in the relevant region scopes.

Grid-alignment allows A–ZPL to provide syntactic cues to indicate where the compiler will

generate various forms of communication. In particular, @’s reductions and scans may involve

indices that are distributed to different processors. For example, the statement

T := Obj + min(min(S@north,S@east),min(S@south,S@west));

refers to both T and S@north, and the indices that are not common to both regions may belong to

different processors.
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One final characteristic of A–ZPL’s data distribution scheme is that sequential variables are

replicated across processors. Coherency is maintained through redundant computation when pos-

sible, or interprocessor communication when not. This coherency-related communication can only

be induced by a small number of operations, such as reductions and scalar read operations, so this

type of communication, as with all communication in A–ZPL, is apparent to the programmer.

3.4 UW A–ZPL Compiler and Run-time System Overview

To date, the University of Washington A–ZPL compiler is the only A–ZPL compiler in existence. It

is a multi-pass, optimizing, source-to-source translator that produces ANSI C code that is compiled

with a machine’s native compiler—here called the back-end compiler—and linked with machine-

dependent and independent run-time libraries. Figure 3.2(a) summarizes the process. Note that

shading indicates an item is customized to the target machine. The component labelled “A–ZPL

Compiler” is the subject of this section. Figure 3.2(b) summarizes its operation, and Sections 3.4.1 –

3.4.4 elaborate. This discussion is limited to the details of the UW A–ZPL compiler that distinguish

it from compilers for other languages. We conclude with a summary of the status of the current

implementation.

3.4.1 Structures

All analyses and transformations are performed on an abstract syntax tree (AST) representation of an

A–ZPL source program. An AST alone is a sufficient representation because the A–ZPL compiler

only performs high-level transformations (as described below), leaving most scalar compilation

tasks to the back-end C compiler. A control flow graph (CFG) is never constructed, for it is implicit

in the AST. A call graph is used for interprocedural analyses.

An array statement dependence graph (ASDG) represents dependences between statements at

the source level. The dependences that arise from the compiler generated loop nests are never explic-

itly constructed, for they are implicit in the ASDG where they are far more concisely represented.

Chapter 4 develops this concept.
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Machine independent
A-ZPL run-time library

Machine dependent
A-ZPL run-time libraryC Code

A-ZPL Source

Native Executable

cc: C Compiler

zc0: A-ZPL Compiler

(a)

1. Parsing

2. Type Checking

3. Normalization

� Temporary insertion
� M-loop insertion

4. Communication Insertion

5. Optimization

� Communication optimization
� Statement fusion
� Array contraction
� Storage conflict elimination
� Static memoization for stencils
� Scalar optimizations

6. C Code Generation

(b)

Figure 3.2: Structure of A–ZPL compilation system. (a) The complete system. (b) The logical
structure of the A–ZPL compiler. Shaded elements are machine-dependent.

3.4.2 Core Transformations

The principal role of the A–ZPL compiler is to scalarize and parallelize array statements, precisely

those tasks that the back-end C compiler does not perform. Scalarization is the process of transform-

ing an array statement into a semantically equivalent scalar (i.e., C) implementation. Parallelization

is the distribution of arrays and the insertion of communication for parallel operation.

Scalarization

Array temporary insertion is the first step of scalarization. Temporary arrays are necessary to im-

plement certain array statements on scalar architectures. Specifically, temporary arrays are inserted

for the following (examples appear in Figure 3.3): (i) actual parameters when their type does not

exactly match the formals (coercion takes place during copy), (ii) actual parameters that are call-by-
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procedure foo(X : [R] integer) ...

var P : [R] record
a : integer;
b : integer;

end;

var A,B : [R] integer;
var T : [R] integer;

foo(P.b);

� � �becomes� � �

T := P.b;
foo(T);

(a)

foo(A);

� � �becomes� � �

T := A;
foo(T);

(b)

A := 2 * +|| B;

� � �becomes� � �

T := +|| B;
A := 2 * T;

(c)

A := A@w/4;

� � �becomes� � �

T := A@w/4;
A := T;

(d)

Figure 3.3: Examples of temporary array insertion.

value, (iii) functions and language-level operators that return arrays, and (iv) right-hand-side array

expressions that alias the left-hand-side array.

Note some of these array copies need only create a new array descriptor into the existing array

data, as in example (a). In some cases the array temporary is unnecessary. For example, in exam-

ple (b) the temporary is unnecessary if formal array parameter X is not modified in procedure foo().

This optimization can dramatically impact performance unlike in the scalar case. Example (d) can

also be optimized, for a temporary is not required if the loop over the second dimension iterates

from high to low indices. These temporary arrays are eliminated by array contraction, introduced in

Chapter 4.

After temporary arrays are inserted, array statements are replaced with multi-loops, or m-loop.

M-loops contain all the necessary information to generate a loop nest to implement a particular ar-

ray statement or statements, without actually explicitly representing the loop nest. This is possible

because array statement are implemented by a highly restricted class of loop nests. This compact
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high-level internal representation greatly reduces compiler complexity without sacrificing any ex-

pressivity. M-loops are parameterized by the computation they represent and the structure of the

loop nest (loop order, direction, tiling, peeling, unrolling, etc.). Optimization of loops due to array

statements becomes a matter of manipulating properties of m-loops. An implication of not explic-

itly representing the control flow for implementing array statements is that basic blocks are large,

exposing significant optimization opportunities even when only performing local analysis.

Parallelization

Distribution of arrays according to the regions that define them is described in Section 3.3. A–ZPL

was designed so that interprocessor communication is only required for the array operators unique

to A–ZPL (e.g., @, +<<, etc.). Thus, the compiler introduces one or more library calls to implement

the necessary communication for each array operator.

3.4.3 Optimization

Naı̈vely generated code may be highly inefficient; thus, aggressive optimization is essential for

achieving performance on par or better than hand-coded applications. The most important A–ZPL

optimizations appear in Figure 3.2(b), and they are summarized below. This set of optimizations was

chosen for the follow reasons: (i) they allow A–ZPL code to compete with hand-coded programs,

and (ii) they may be uniquely performed in A–ZPL due to its high-level intermediate representation.

This is not to say that they can not be performed in other language contexts. Rather, in other contexts

they are of questionable value, for they likely optimize infrequently occurring or easily thwarted

idioms. Conversely, A–ZPL provides language-level support for the constituents that they optimize.

All these transformations optimize elements of the generated code over which the programmer has

no control (e.g., communication placement and loop nest structure); thus, it is particularly important

that the compiler generate quality code. The A–ZPL compiler leaves most scalar optimizations (e.g.,

register allocation, instruction scheduling, etc.) to the back-end C compiler.

Communication Optimization. The A–ZPL compiler aggressively optimizes interprocessor

communication [Cho99], for naı̈ve communication can significantly limit parallel performance.

The compiler performs three well known transformations: redundancy elimination, combining,
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and pipelining. The first two minimize the volume and number communication steps, respectively.

Pipelining, achieves latency hiding by overlapping data transmission and computation. Though

these transformations are well known, the A–ZPL context permits unique and consistently effective

application [CS97].

Array Contraction and Statement Fusion. Array statement fusion is equivalent to loop fu-

sion [Wol96], except that it transforms m-loops, which imply loop nests, rather than loop nests

directly. Like loop fusion, statement fusion can improve data locality. It can also form loop nests

such that certain array references may be contracted to scalar references, conserving memory and

improving cache performance. Array statement fusion and contraction are the topic of Chapter 4.

As the reader will learn, array contraction can improve performance by as much as an order of

magnitude and typically 20 to 30% in already highly optimized codes.

Storage Conflict Elimination. A storage conflict exists when multiple memory references refer

to the same portion of memory, but there is no flow of data from one to the other. These are called

false data dependences, for one statement only depends on the other in that they share storage, not

data values. False data dependences often prevent other transformations, such as statement fusion

and array contraction. Storage conflict elimination introduces extra memory resources in order to

eliminate the conflict, enabling other transformations [Low00]. The net result is that storage conflict

elimination can improve performance by as much as a factor of two.

Static Memoization for Stencil Computations. Stencil computations are very common in data

parallel computations and they are concisely represented in A–ZPL. Often stencils redundantly

compute values in different loop iterations. For example, imagine a stencil that sums the eight

neighbors for each element of a two-dimensional grid. Iteration j of the inner loop computes the

sums A[i-1,j-1]+A[i+1,j-1], A[i-1,j]+A[i+1,j] and A[i-1,j+1]+A[i+1,j+1]. Sim-

ilarly, iteration j� 1 computes the sums A[i-1,j]+A[i+1,j], A[i-1,j+1]+A[i+1,j+1] and

A[i-1,j+2]+A[i+1,j+2]. Static memoization for stencil computations reuses partial results be-

tween iterations, reducing the number of floating point operations [DCS00]. This transformation

has been shown to improve performance by 15% in applications such as NAS MG.
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Scalar Optimizations. Out of necessity, the A–ZPL compiler performs a small number of scalar

optimizations. These are necessary for the following reasons: (i) the free use of C pointers thwarts

some analyses in the back-end compiler, (ii) our studies indicate that back-end C compilers do not

reliably or effectively perform certain critical transformations, or (iii) the transformation requires

high-level semantic information that the back-end C compiler is unlikely to derive. For example, the

compiler performs tiling in order to balance parallelism and communication overhead in pipelining

wavefront computations, the topic of Chapter 5. The compiler performs loop invariant code motion

and tiling in order to improve the performance of flood array access; this is unique in that the

transformation is based on the type of the references, not how they are referenced. In addition all

array references are optimized to minimize index calculation, effectively performing loop invariant

code motion and strength reduction. This last transformation alone improves the performance of

most codes by approximately a factor of two.

3.4.4 Run-time System

Arrays are represented at run-time via a descriptor representing the structure of the array and con-

taining a pointer to a block of memory that represents the content of the array. This permits arrays

to be first class, dynamic, and cheaply aliased.

The bulk of the run-time library is devoted to performing communication. A portable machine

independent library, called the Ironman interface, has been defined, and all A–ZPL compiled pro-

grams target this machine independent library [CCS98]. The Ironman interface is unique in that it

presents collective semantics; thus, each routine does not have a particular meaning, but when used

together they have a meaningful interpretation. The Ironman interface has been implemented on

top of a diverse collection of communication mechanisms, including the message passing interface

(MPI), the parallel virtual machine (PVM), the Cray Shared Memory Access Library (Shmem), and

shared memory.

3.4.5 Current Status

As of Autumn 2000, every language feature and compiler transformation described in this document

is fully implemented. The A–ZPL language definition is not yet complete, so it and its compiler are
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evolving, while always maintaining backward compatibility. Despite development in an academic

environment, the compiler is considered beta quality. It is publicly available for download and

evaluation at the A–ZPL web site [ZPL] in binary form for all common parallel and networked

machines. It is routinely used by non-computer scientists for production application development,

and it has been used to derive numerous published research results [DLMW95, LLST95, RBS96,

WGS00].

3.5 Historical Overview of the Development of A–ZPL

A complete history of A–ZPL is premature, for the language is yet to be completed. Nevertheless,

the A–ZPL project is sufficiently mature that its past is worth recording for fear of losing it and so

that one may better understand how it came to be. We sketch the critical developments along the

path to A–ZPL. It is far from complete and, without a doubt, (unintentionally) biased.

It was widely held in the late 1970s and early 1980s that improving performance by exploiting

some form of parallelism was a winning idea. This period saw the advent of a great many parallel

platforms and designs, including the Carnegie-Mellon University Cm�, the CRAY-1, the Connec-

tion Machine, Cosmic Cube, Cray X-MP, Intel iAPX 432, VAX 11/782, Denelcor HEP, and the

NYU Ultracomputer. Experience with these machines demonstrated that it was difficult to realize

a particular machine’s potential, and a large body of work was produced to automatically derive

parallel code from sequential program representations. It was during this time that David Kuck

et al. at the University of Illinois produced the Parafrase compiler; Utpal Banerjee, also from the

University of Illinois, formalized data dependence; and Ken Kennedy began work on the Parallel

Fortran Compiler (PFC) at Rice.

By this time Larry Snyder, then at Purdue, already had significant experience in practical and

theoretical aspects of parallel computation. It was his belief that automatic parallelization would

not be the silver bullet many hoped it would be, and to date he is correct. In 1981, he began the

BlueCHiP project to explore alternative architectures, programming methodologies and algorithms

for exploiting parallelism. Snyder went to the University of Washington in 1983, and the project

continued for another four years.

The BlueCHiP project was built around the CHiP reconfigurable parallel computer architec-
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ture [Sny81]. A visual programming system called Poker was designed to exploit the CHiP archi-

tecture [Sny83, Sny84, SS86, NSS�88]. The system was built on a VAX11/780, which represented

half of the Purdue Computer Science Department’s computing power. The Poker environment ex-

ploited bit-mapped displays, which were still in their infancy. The Poker definition of the CHiP

interconnection network was a precursor to the concept of the port ensemble in phase abstractions

(described below).

Poker was designed exclusively for the CHiP architecture. It was for this shortcoming that

Snyder began exploring machine abstraction. In 1986 he formalized the concept of a machine

model, called a type architecture, and presented a candidate type architecture, or CTA, intended to

abstract all modern parallel machines. The CTA and its unfortunate name have persisted, the former

serving as the foundation of ZPL and then A–ZPL. The CTA was unique in that it did not provide

the convenient shared memory view of parallel machines. A distributed memory view was taken,

because it more accurately abstracted the great diversity of machines that existed [AS91, NS92].

Snyder believed automatic parallelization and a shared memory model were not the solution,

so he and his colleagues developed the phase abstractions programming model [Sny90, AGNS90].

Phase abstractions provides a framework for structuring parallel programs, but it is not itself a

programming language. Snyder and his students began experimenting with programming techniques

and language abstractions founded on phase abstractions. David Socha’s thesis developed Spot, the

first in-depth foray into exploiting phase abstractions [Soc91]. Snyder, Ton Ngo, and Calvin Lin

argued that a programmer may use a global view of the computation without a shared memory

programming model [NS92], and Lin demonstrated this while maintaining portability across many

different machines [LS91, Lin92, LS92].

In 1992, Snyder and Lin described Orca C, a variant of C built on phase abstractions [LS93]. The

account was incomplete, and they next considered a subset of the language as a first step. This new

language was intended for programming the third level of the phase abstractions’ XYZ levels. For

this reason the language was called ZPL, short for the Z-level programming language. A seminar

in Spring 1993 was devoted to language design, and it was first presented the summer of the same

year [LS94b]. Ruth Anderson, Bradford Chamberlain, Sung-Eun Choi, George Forman, Calvin Lin,

Keith Partridge, Larry Snyder and W. Derrick Weathersby attended the seminar.

The original ZPL was primitive. Only a small class of data-parallel applications were well suited
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for ZPL implementation, but those that were were expected to perform very well. The compiler was

expected to be a simple source to source translator; sophisticated compilation techniques would not

be necessary. Under the direction of Lin, the seminar attendees began the implementation in the

summer of 1993, producing a prototype ready for evaluation the following summer [LS95]. The

author joined the project at this time.

As the team became more aware of how to best compile for parallel machines, they added

language features to improve the generality of the language, including flood regions (1996), multi-

regions (1997), and support for pipelining wavefront computations (1999). At the same time, the

compiler became more sophisticated, aggressively optimizing communication and array references.

In 1997, ZPL was a complete language for writing data-parallel applications, so it was re-

leased for public use [ZPL]. Since that time, the language has been further generalized and dubbed

Advanced–ZPL, or A–ZPL. The design is still underway.

3.6 Summary

A–ZPL arose from the needs of high performance parallel computing. We have looked at the role of

machine, programming, and performance models in its design philosophy; and we have contrasted

this to a number of other systems. We have also outlined the structure of the current University of

Washington A–ZPL compiler and summarized the stages of the language’s development.
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Chapter 4

ARRAY STATEMENT FUSION AND ARRAY CONTRACTION

4.1 Motivation

Array languages such as A–ZPL [Sny99], Fortran 90 (F90) [ABM�92], and High Performance

Fortran (HPF) [Hig97] are important vehicles for expressing data parallelism. Though they simplify

the specification of array-based calculations, they also present a potential problem: Large temporary

arrays may need to be introduced, either by the programmer or by the compiler, because arrays are

the basic unit of manipulation. Array statement fusion is a compiler transformation that groups array

statements so that they are implemented by a single loop nest, in effect fusing the loop nests that

implement each array statement. Array contraction is a transformation that converts array references

within a loop nest to references of lower dimensional structures.

These temporary arrays frequently appear in the source program, but it is often convenient for the

compiler to insert temporary arrays to preserve array language semantics or to simplify subsequent

analyses (as described below). In both cases, these array temporaries increase memory use, degrade

performance by polluting the data cache, and therefore make array languages impractical.

For example, the A–ZPL code fragment in Figure 4.1(a) uses temporary array R to cache a com-

putation, while the C equivalent in Figure 4.1(b) uses only the scalar variable s, which can be viewed

as a contracted form of the full array R. This array-to-scalar conversion, called full contraction, is

the most common form of contraction. But there are also circumstances in which only a subset of an

array’s dimension may be contracted, called partial contraction. For example, consider the C code

fragment in Figure 4.2(a).1 The first dimension of array A represents an intermediate result. If only

the final result is subsequently used (i.e., the nth row in the sample code), the intermediate results

need not be preserved, and the first dimension may be contracted, as in Figure 4.2(b).

In order address these deficits, an array language compiler must ensure that certain array lan-

1Chapter 5 shows how such codes may be expressed in A–ZPL.
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[i,1..n] begin
R := AA * D@north;
D := 1.0 / (DD - AA@north * R);
Rx := Rx - Rx@north * R;
Ry := Ry - Ry@north * R;

end;

(a)

for (j=1; j<=n; j++) {
s = AA[i][j] * D[i-1][j];
D[i][j] = 1 / (DD[i][j] - AA[i-1][j] * s);
Rx[i][j] = Rx[i][j] - Rx[i-1][j] * s;
Ry[i][j] =Ry[i][j] - Ry[i-1][j] * s;

}

(b)

Figure 4.1: Illustration of unnecessary array allocation (R) in an array language using a code frag-
ment from the tridiagonal systems solver component of the SPEC FP95 Tomcatv benchmark.

for (j=1; j<=n; j++) {
A[0][j] = ...;

}

for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {

A[i][j] = foo(A[i-1][j]);
...

}
}

for (j=1; j<=n; j++) {
... A[n][j] ...;

}

(a)

for (j=1; j<=n; j++) {
A[j] = ...;

}

for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {

A[j] = foo(A[j]);
...

}
}

for (j=1; j<=n; j++) {
... A[j] ...;

(b)

Figure 4.2: Partial contraction code fragment sample.

guage statements are implemented with a single loop nest so that array references may be contracted.

There are two approaches to this. The first is to scalarize the array language statement (i.e., pro-

duce scalar loop nests for each array statement) and rely on a scalar language compiler to remove

the array temporaries using its existing scalar-level optimizations. Specifically, the scalar compiler

must fuse loops to enable contraction, as in Figure 4.1(b). The second approach is to optimize at

the array level prior to scalarization (i.e., perform analyses and transformations on array statements

directly). Since fusion and contraction are mature and well understood transformations, the first ap-

proach would appear a natural choice because it simplifies the array language compilation process

and leverages existing compiler technology.

However, we believe that the first approach is inferior for several reasons. First, optimizing ar-

ray references by array contraction in a scalar compiler wastes compilation cycles, because scalar
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languages do not necessitate the introduction of temporary arrays, so they infrequently appear. Sec-

ond, removing array temporaries at the scalar level solves the problem at a greater conceptual dis-

tance from the source of the problem and at a greater cost. Third, though the issue of full con-

traction has been previously studied, partial contraction has not. Most importantly, it is impractical

to implement an integrated optimization strategy when some optimizations (e.g., communication

pipelining) are performed at the array level, while others (e.g., array contraction) are subsequently

performed at the scalar level. Instead, we pursue array-level optimization in support of earlier

claims that there are performance benefits to performing analyses and transformations at the array

level [CCL�96, RK96].

In a comparative evaluation, we find that existing compilation systems generally fail to optimize

these unnecessary temporary arrays and produce codes with correspondingly poor performance. We

present techniques and the novel structures they employ, and we find that they consistently optimize

the unnecessary arrays. We conclude that unnecessary arrays pose a significant, yet eminently

tractable problem for array language compilers.

The next two sections define the representations used and give an abstract problem statement.

Section 4.4 presents the approach to array contraction, and its evaluation appears in Section 4.5.

The final two sections present related work and summarize.

4.2 Definitions

This section describes the A–ZPL array statement normal form and array-level dependence repre-

sentation. This representation is used throughout the compiler and to perform fusion and contrac-

tion. The construction and use of the dependence representation are also presented.

4.2.1 A–ZPL Array Statement Normal Form

The A–ZPL array statement normal form permits array statements of two kinds: simple and com-

plex. Simple array statements are element-wise functions of identically indexed arrays, all of the

same rank. Complex array statements contain a single array operator (e.g., @), the result of which is

assigned to a scalar or array variable.2 In both cases, a region, REGION(s), is associated with each

2For simplicity, this discussion and Figure 4.3 do not address non-scalar left-hand-sides, such as record selection.
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�statement� ::= [�region�] �simple-statement� ;

� [�region�] �complex-statement� ;

�simple-statement� ::= �id� := �simple-expression� ;

�simple-expression� ::= �literal� � �id� � �unary-op� �simple-expression�

� �simple-expression� �binary-op� �simple-expression�

�complex-statement� ::= �id� := �complex-expression� ;

�complex-expression� ::= �id�@�id�

� +<<�id� � max<<�id� � � � � (reductions)

� +||�id� � max||�id� � � � � (scans)

� >>[�region�] �id� (flood)

� �id�#[�id-list�] (remap)

� � � �

Figure 4.3: Informal summary of A–ZPL array statement normal form.

statement, s, to specify the extent of the computation. The grammar in Figure 4.3 describes A–ZPL

array statement normal form, and sample A–ZPL code fragments before and after normalization

appear in Figure 4.4.

A–ZPL statements are normalized via the introduction of temporary arrays. Region analysis

is also necessary to determine the region governing the statement. In this work, we only need to

determine when two regions are identical, which can usually be accurately determined via intra-

procedural. The array statements of other languages (e.g., HPF) may also be represented via the

A–ZPL array statement normal form. In this case, more complex analysis is necessary, but it is

comparable to the parallelization and data distribution tasks that the compiler must perform already.

This normal form is an appropriate representation for array statements because the data volume

of each term in a single array statement is the same (i.e., they are conformable). The normal form

serves as an effective internal representation when compiling for parallel machines because it makes

the alignment of arrays explicit. All array references are perfectly aligned and data transfer is

only required for complex statements, so normalized statements compile to highly efficient parallel
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[R] begin
A := B@(-1,0);
C := A@(0,-1);
B := A@(-1,1);

end;

[R] A := B@(-1,0);
[R] C := A@(0,-1);
[R] B := A@(-1,1);

[R] begin
A := A@east + >>[,j] B;

end;

[R] T1 := A@east;
[R] T2 := >>[,j] B;
[R] A := T1 + T2;

[i,1..n] begin
R := AA * D@north;
D := 1.0 / (DD - AA@north * R);
Rx := Rx - Rx@north * R;
Ry := Ry - Ry@north * R;

end;

[i,1..n] T1 := D@north;
[i,1..n] R := AA * T1;
[i,1..n] T2 := AA@north;
[i,1..n] D := 1.0 / (DD - T2 * R);
[i,1..n] T3 := Rx@north;
[i,1..n] Rx := Rx - T3 * R;
[i,1..n] T4 := Ry@north;
[i,1..n] Ry := Ry - T4 * R;

Figure 4.4: ZPL code fragments before and after normalization.

code [CCL�98b]. Normalized array statements contain only arrays of a single rank, which we

designate the rank of the statement. Another implication of normalized array statements is that each

simple statement can be implemented with a simple loop nest, and each complex statement can be

implemented with a call to the A–ZPL runtime system.

4.2.2 The Array Statement Dependence Graph

In this section, we review the concept of data dependence, and we refashion existing mechanisms to

represent dependences between normalized array statements. Data dependences [Wol96] represent

ordering constraints on statements in a program. A flow or true dependence requires that a variable

assignment precede a read to the same variable, and an anti-dependence requires the reverse. An

output dependence requires that one assignment to a variable precede another assignment to the

same variable, so that the appropriate value remains after both assignments. Transformations that

reorder dependent statements (i.e., move the dependence target before its source) are illegal, because

they violate the dependence and do not preserve correctness.

Data dependence is also used to represent ordering constraints on iterations in the iteration space

of a loop nest. The iteration space associated with a loop nest has a dimension for each loop in

the nest. Loop transformations such as loop interchange or loop reversal are only legal if they
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for (j=n; j>=1; j--) {
for (i=n; i>=1; i--) {

A[i][j] = B[i-1][j];
B[i][j] = A[i-1][j+1];

}
}
for (i=1; i<=n; i++) {

for (j=1; j<=n; j++) {
C[i][j] = A[i][j-1];

}
}

(a)

3

2

1

{(A,(0,1),fl
ow)}

{(A,(1,-1),flow),
  (B,(-1,0),anti)}

(b)

Figure 4.5: Two representations of the same (first) array computation from Figure 4.4: (a) C, and
(b) array statement dependence graph.

preserve the data dependences in the iteration space. Distance vectors serve as a static analysis tool

to represent data dependences concisely in an iteration space [Wol96].

Definition 1 A distance vector is an integer n-tuple, d � �d1�d2� � � � �dn�, representing a dependence

between the iterations of a rank n iteration space, where the source of the dependence precedes the

target by di iterations in loop i (1 is the outermost), for 1� i� n. Note that a negative or zero value

implies that the target precedes the source or that they are in the same iteration, respectively.

The leftmost (i.e., outermost) nonzero element of a distance vector determines which loop car-

ries the dependence and by how many iterations. This element must be positive, otherwise the

dependence target precedes the source in the loop that carries the dependence, which is clearly

illegal. Thus, legal distance vectors are called lexicographically nonnegative.

Distance vectors are inappropriate for use in array-level compilation, because they are derived

from loop nests, which are not created until after scalarization, the final step in array language

compilation. As a result, we introduce a variant of the distance vector, called the unconstrained

distance vector, to represent array-level data dependences between normalized array statements.

Definition 2 An unconstrained distance vector (UDV) is an integer n-tuple, u� �u1�u2� � � � �un�, rep-

resenting a dependence between two normalized n-dimensional array statements, where the source

of the dependence precedes the target by ui iterations of the loop that iterates over dimension i (if

both statements appear in the same loop nest).
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Dependences with nontrivial unconstrained distance vectors arise between statements containing

arrays manipulated by the @ operator. UDVs are constructed by subtracting the dependence’s target

direction vector from its source direction. For example, the UDVs that arise from the dependences

in the first code fragment of Figure 4.4 are �0�0�� �0��1� � �0�1� and �0�0�� ��1�1� � �1��1�

for array A and ��1�0�� �0�0� � ��1�0� for array B. The lexicographical nonnegativity of a UDV

has no bearing on the legality of the dependence it represents.

Because scalarization of a normalized statement generates a single loop to iterate over the same

dimension of all arrays in its body, we can characterize dependences by dimensions of the array

rather than dimensions of the iteration space. Thus, ui is the distance of the dependence along array

dimension i. UDVs are more abstract than traditional (constrained) distance vectors because they

separate loop structure from dependence representation. Though UDVs are not fully general, they

can represent any dependence that appears in our normal form.

We represent code using the array statement dependence graph.

Definition 3 An array statement dependence graph (ASDG), G � �V�E�, is a labeled, acyclic, di-

rected graph, where a vertex v represents a set of statements, s�v�, edges represent data dependences

between statements, and each edge, �vi�v j� 	 E, is labeled, l�vi�v j�, with a set of (variable name,

unconstrained distance vector, dependence type 	 �flow, anti, output�) tuples.

An edge from vi to v j, �vi�v j� 	 E , in an ASDG indicates that there exists a dependence from

a statement in s�vi� (the source of the dependence) to a statement in s�vj� (the target). The label

on each edge describes the dependences the edge represents by naming the variables that induce

the dependences and the associated UDVs and dependence types. Upon initial construction of an

ASDG, each vertex vi represents exactly one statement; thus, s�vi� � �si�. Only after statement

fusion do vertices represent sets of greater than one member. Figure 4.5(b) contains the ASDG that

corresponds to the first set of normalized array statements in 4.4.

4.2.3 Constructing an ASDG

Next, we describe how an ASDG is constructed. First, define USE(s) to be the set of pairs �x�R�

such that the region R indices of variable x are used in statement s. Analogously, define DEF(s) to

be the set of pairs �x�R� such that the region R indices of variable x are defined in statement s. If
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the indices of variable x cannot be determined—either because the region associated with statement

s is not statically available or the remap operator is used with x—the region R� is used, denoting

all indices. At a particular program point, a variable use is upward exposed if it can be reached

from that point. An upward exposed use is represented with the tuple �s�x�R�, indicating that the

use of the region R indices of variable x in statement s is upward exposed. Let UPUSEin(s) and

UPUSEout(s) be the set of upward exposed uses at the program point just before and after statement

s, respectively.

We now describe the calculation of the UPUSEin(s) and UPUSEout(s) sets. First, define

SUCCESSORS(s) to be the set of all statements that may immediately follow statement s in the

dynamic execution of the program. Next, the following functions are used in a standard, backward,

iterative, data-flow analysis.

UPUSEin(s) � USE(s)
 �UPUSEout(s)�
��s��x�R����s��x�R�� 	 UPUSEout(s) and �x�R� 	DEF(s) and R� � R3�

UPUSEout(s) �
�

s� 	 SUCCESSORS(s)

UPUSEin(s�)

Analogously, the sets REACHDEFin(s) and REACHDEFout(s) are calculated via a forward,

data-flow analysis. Again, regions are considered in the process of killing references.

REACHDEFin(s) �
�

s� 	 PREDECESSORS(s)

REACHDEFout(s
�)

REACHDEFout(s) � DEF(s)
 �REACHDEFin(s)�
��s��x�R����s��x�R�� 	 REACHDEFin(s) and

�x�R� 	 DEF(s) and R� � R��

Now we construct ASDG G � �V�E�. If there are n statements, let there be n vertices, s�vi� �

�si�, and l�vi�v j� � /0, for all vi�v j 	V . First, we construct the flow dependences. Edge �vi�v j� 	 E

when there is a variable x such that �x�R� 	 DEF(si), �s j�x�R�� 	 UPUSEout(si), and R�R� � /0.

For each such edge, let �x�u�flow� 	 l�vi�v j�, where UDV u calculation is described above. We

find a minimal solution. Analogously, the set of reaching definitions is calculated to define anti-
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and output dependences. Specifically, �x�u�anti� 	 l�vi�v j� when �vi�v j� 	 E , �x�R� 	 USE(s j),

�si�x�R�� 	 REACHDEFin(s j), and R�R� � /0; �x�u�output� 	 l�vi�v j� when �vi�v j� 	 E , �x�R� 	
DEF(s j), �si�x�R�� 	 REACHDEFin(s j), and R�R� � /0.

Dependence edges are necessarily conservative, for the region associated with a particular state-

ment may not admit static analysis and we will use R�. Nevertheless, the situation is far from bleak.

A–ZPL regions are quite often static. Furthermore, region operators greatly simplify analysis. For

example, regions [R] and [east of R] clearly do not intersect.

ASDGs are constructed for entire procedures, though statement fusion only operates on a single

basic block at a time. In this context, basic blocks are defined at the source level (i.e., before

scalarization). Thus, a basic block is a single-entry, single-exit sequence of source-level instructions.

An implication of this is that the control flow implicit in array statements does not break basic

blocks.

As a notational convenience, UPUSEin(S � �s1�s2�s3�) is defined to be UPUSEin(si), where

si 	 S lexically precedes all other statements in S. The same is true of other in-sets, and the dual is

true of out-sets.

4.2.4 Using the ASDG

If after scalarization, the source and target of a dependence appear in a single loop nest, a conven-

tional (constrained) distance vector may be constructed from an unconstrained one given a descrip-

tion of the loop nest structure.

Definition 4 A loop structure vector is an integer n-tuple, p � �p1� p2� � � � � pn�, that describes the

dimension and direction of each loop in an n-deep loop nest. Loop i (1 is the outermost loop in the

loop nest) iterates over dimension �pi� in the direction of the sign of pi, positive denoting increasing.

A loop structure vector is a permutation of ��1��2� � � � ��n�. The loop structure vector that

describes the loop nests in Figure 4.5(a) are ��2��1� and �1�2�. In the first nest, the outer loop

iterates over the second dimension and the inner loop iterates over the first dimension, both in a

decreasing direction.
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A constrained distance vector, d � �d1�d2� � � � �dn�, is constructed from an unconstrained one, u,

and a loop structure vector, p, by letting di �
pi
�pi�

u�pi�, for 1 � i � n. Consider the first and third

statements in the first set of normalized array statements in Figure 4.4. If p � ��2��1�, the UDVs

��1�0� and �1��1� become �0�1� and �1��1�, respectively, when constrained. The constrained

distance vectors are lexicographically nonnegative, so the dependences of the code in Figure 4.4

are preserved by the first loop nest in 4.5(a) resulting from loop structure vector p. There are no

constraints on the structure of the second loop nest because it does not contain statements that

depend on each other.

A fusion partition describes a particular fusing of the statements in an ASDG.4

Definition 5 A fusion partition, P � �P1�P2� � � � �Pl�, of an ASDG, G � �V�E�, is a partitioning of

the vertices of G into l disjoint sets, P1�P2� � � � �Pl, called fusible clusters such that the following

conditions hold:

(i) all statements in a single cluster operate under the same region (i.e., REGION(si) �
REGION(s j)� �si�s j 	 Pi),

(ii) all unconstrained distance vectors on intra-fusible-cluster flow dependences are null vectors
(i.e., �Pi��v1�v2 	 Pi, if �x�u�flow� 	 l�v1�v2� then u is a null vector),

(iii) there are no inter-fusible-cluster cycles in G, and

(iv) a loop structure vector exists for each fusible cluster that preserves all intra-fusible-cluster
dependences.

Upon scalarization, all the statements in a fusible cluster are implemented with a single loop

nest. The statements in each loop nest and the loop nests themselves are ordered by a topologi-

cal sort using intra- and inter-fusible cluster dependence edges, respectively. The first condition

above ensures that all the statements in a single cluster have the same (i.e., conformable) loop

bounds. The second condition ensures that no loop-carried flow dependences will inhibit paral-

lelism. Inter-fusible-cluster dependences constrain the order of clusters, and the UDVs associated

with inter-cluster dependences constrain the structure of the loop nest that implements them. Thus,

the final two conditions ensure that inter- and intra-cluster dependences are preserved, respectively.

4This terminology is borrowed from Gao et al. [GOST92], who considered a similar problem. See Section 4.6.
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An algorithm to decide the final condition is described in detail in Section 4.4.2. The trivial fusion

partition of an ASDG is one in which there is exactly one statement in each fusible cluster.

Given a particular fusion partition we can decide for what arrays contraction has been enabled.

First, we consider full contraction (i.e., the case when an entire array becomes a scalar).

Definition 6 Given a fusion partition, P � �P1�P2� � � � �Pl�, of an ASDG, G � �V�E�, references to

array x in a fusible cluster Pi is contractible if the following conditions hold:

(i) array x is dead at the entry and exit of Pi (i.e., ��v1�v2� 	 E, if �x�u�flow� 	 l�v1�v2�, then
v1 	 Pi �� v2 	 Pi), and

(ii) the unconstrained distance vectors of all data dependences within cluster Pi due to x are null
vectors (i.e., �v1�v2 	 Pi��v1�v2� 	 E, if �x�u� t� 	 l�v1�v2�, then u is a null vector).

These conditions ensure that all dependent references to x will appear in a single loop nest upon

scalarization, and that there will be no loop-carried dependences due to x. The latter condition may

be relaxed when the dependence is along a dimension of the array that is not distributed [CK94], but

here we assume that all dimensions are distributed.

Next we determine when an array is a candidate for partial contraction. Because opportunities

for partial contraction arise due to loop-carried dependences (see Figure 4.2), the second condition

of Definition 5 must be excluded. Chapter 5 describes when this is necessary.

Definition 7 Given a fusion partition, P � �P1�P2� � � � �Pl�, of an ASDG, G � �V�E�, dimension j of

array references to x in a fusion partition Pi are contractible if the following conditions hold:

(i) there exists at least one intra-partition flow data dependence due to variable x and a single
UDV, d, is associated with them all,

(ii) all entries of UDV d are zero, except dj (i.e., d j � 0 and di � 0��i � j),

(iii) for R� � REGION(Pi)5 and ��s�x�R� 	 REACHDEFin(Pi), R� R�, and

(iv) for R� � REGION(Pi) and ��s�x�R� 	 UPUSEout(Pi), R� [!d in R�].

5This unambiguously identifies a single region, for all statements in a fusible cluster compute under the same region
(see Definition 5).
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The first condition ensures that there are both uses and definitions of array x, and that if refer-

ences to it induce loop-carried flow data dependences, they are all the same. The second condition

ensures that if a loop-carried flow dependence exists, it is cardinal (i.e., only one non-zero element).

The third condition ensures that only definitions of x that will be killed by the statements in Pi reach

them. And the final condition ensures that no values along the contracted dimension are required in

later statements. Note that the elements of direction !d are the negation of those of direction d.

4.3 Abstract Problem

Statement fusion is performed both to enable the elimination of arrays by contraction and improve

data cache utilization by exploiting inter-statement locality. For the first goal, we seek a fusion

partition, P, for an ASDG, G, that minimizes the number of array references after array contraction

(equivalently, maximize contracted references). A secondary, and complementary, goal is to mini-

mize memory consumption. The number of array element references eliminated by the contraction

of array x, called reference weight, w�x�G�, is a function of the number of times x is referenced at

the array level and the size of the region under which these references occur. We call the sum of

the reference weights of all contracted arrays the contraction benefit of a fusion partition. For the

second goal, we seek a fusion partition that maximizes the number of arrays without inter-fusible-

cluster dependences. The intuition is that while intra-cluster dependences are potential sources of

cache reuse, we must be careful not to pollute the cache with the increased references that come with

excessive fusion. When all references to an array appear in a single loop nest, all other loop nests

are spared the cache burden of references to the array. Both problems are provably NP-complete, so

we present approximate solutions in the next section.

4.4 Implementation

This section presents algorithms for performing statement fusion to enable contraction and exploit

locality. Certain fusion decisions may prohibit further fusion; thus, we chose to perform fusion for

contraction before (and potentially at the expense of) fusion for locality. The former is likely to have

greater impact on performance than the latter, and in practice they are not at odds. We also describe

the details of scalarization.
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4.4.1 Statement Fusion

Before describing the algorithms, we introduce a definition. A reference group is a tuple �x�S� rep-

resenting the fact that variable x is referenced in the statements in set S. A minimal reference group

contains a definition (statement) and all statements that use it and that it reaches. The references

in reference groups serve as candidates for contraction; thus, the use of minimal reference groups

improves the flexibility of contraction decisions by decreasing granularity.

Our algorithm to fuse statements to enable array contraction appears in Figure 4.6. It takes as

input an ASDG, G, and it returns a fusion partition P � �P1�P2� � � � �Pl� containing l clusters. P is

initialized to the trivial fusion partition, containing a cluster for each of the l vertices in V (line 2).

The algorithm considers each reference group, Ri, which together represent all array references

in G. The groups are considered in decreasing reference weight, w�Ri�, so that more frequently

referenced variables are considered first. As a result, arrays that have potentially the largest single

impact on the total contraction benefit are considered first. In line 7, set c is assigned all the fusible

clusters that contain references to variable x. The fusion of all the statements associated with the

fusible clusters in c might introduce inter-fusible-cluster cycles, so c becomes the union of itself and

the fusible clusters that are on inter-fusible-cluster cycles using the GROW function (line 8). This

guarantees that there will be no dependence cycles, for cycles are not permitted in fusion partitions.

If variable x is contractible and a fusion partition is produced by combining all the vertices in c (by

Definitions 6/7 and 5), fusion is performed. The union of all statements in the clusters in c is taken

and assigned into the fusible cluster Pk. The counter l is decremented to indicate that there are fewer

clusters.

The FUSION-FOR-CONTRACTION algorithm uses three auxiliary routines. Function

GROW(c�G�P) returns the set of all fusible clusters in P that are (i) not in c, (ii) reachable by a

dependence path from a statement in c, and (iii) have a dependence path to a cluster in c. These

are the statements that will be on an inter-fusible-cluster dependence cycle if the clusters in c are

fused. This function’s running time is O�e�, where e is the number of edges in G. The FUSION-

PARTITION?(c�G) and CONTRACTIBLE?(x�c�G) predicates test the conditions in Definitions 5

and 6/7, respectively. They both run in O�e� time. The former function can ignore inter-cluster

cycles because line 8 guarantees they will not exist. It also calls FIND-LOOP-STRUCTURE (de-
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INPUT: G � �V�E� : an array statement dependence graph
OUTPUT: P � �P1�P2� � � � �Pl� : a fusion partition of G

FUSION-FOR-CONTRACTION(G)

1 l � �V �
2 P� trivial partition of G �Pi � �Si�, 1� i� l�
3 R� reference groups in G �list of tuples �x�S� indicating array x appears in statements S�
4 R� sort R by decreasing weight w �w�Ri�� w�Rj� for i� j�
5 for i � 1 to �x� do �consider variable in reference group i for contraction�
6 �x�S� � Ri �consider variable x, which appears in the statements of set S�
7 c � �Pj��s 	 S such that s 	 s�vj��
8 c � c
GROW�c�G�P�
9 if CONTRACTIBLE?(x�c�G) and FUSION-PARTITION?(c�G) then

10 k � smallest j for Pj 	 c
11 s�vk� � 
z�cs�z�
12 l � l� ��c��1�
13 end if
14 end for
15 return P

Figure 4.6: Algorithm to find a fusion partition that enables contraction in an ASDG.

scribed in the next section) to decide whether condition (iv) of Definition 5 is met. If there are n

reference groups in G, the total running time for FUSION-FOR-CONTRACTION is O�ne�.

The algorithm to perform fusion for locality enhancement is identical to that in Figure 4.6,

except that the CONTRACTIBLE? predicate in line 7 is eliminated. We try to fuse all statements

that reference the array that will have the greatest single locality benefit, which is analogous to the

contraction benefit. Next, we will describe the process by which an ASDG is scalarized given a

fusion partition.

4.4.2 Scalarization

Scalarization generates a loop nest for each fusible cluster in a fusion partition. The generated loop

nest and statements in the loop nests are ordered by a topological sort using inter- and intra-fusible-

cluster dependences, respectively. The only work remaining is deciding the structure of each loop
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nest, i.e., the direction in which and dimension over which each loop iterates. This information is

encoded in a loop structure vector (Definition 4) for each fusible cluster. Intra-cluster dependences

constrain the structure of the loop nest that will implement its statements (i.e., the loop nest must

preserve these dependences). When the dependences do not fully constrain the structure of the loop

nest, we will favor the loop structure that best exploits spatial locality.

The algorithm to find a loop structure vector given a set of unconstrained distance vectors from

intra-fusible-cluster array-level dependences appears in Figure 4.7. FIND-LOOP-STRUCTURE con-

sists of a doubly nested loop. The outer loop (line 4) iterates over the loops of the target loop nest,

and the inner loop iterates over the dimensions of the arrays. The loop body matches loops to ar-

ray dimensions (lines 9 through 13). We consider target loops from outer to inner because when

a dimension is assigned to a loop, the dependences that are carried in that loop do not constrain

the structure of the inner loops (thus, set C is pruned in line 12). We consider dimensions from

1 to n so that inner loops will be matched with higher array dimensions to exploit spatial locality

(assuming row-major allocation), if allowed by the constraints. For example, suppose set C contains

two UDVs �1�0� and ��1�1�. The outer loop can not iterate over the first dimension, because the

1 and �1 imply opposite iteration directions. But the outer loop can iterate over the second dimen-

sion, eliminating the second UDV (line 12) and allowing the the inner loop to iterate over the first

dimension. The returned loop structure vector is p � �2�1�.

If there are e dependences, the running time of lines 8 and 12 is O�e�, so FIND-LOOP-

STRUCTURE runs in O�n2e� time. Because the rank of the arrays, n, is typically very small and

effectively constant [SLY90], the algorithm is essentially linear, O�e�, in the number of depen-

dences.

4.5 Performance

This section evaluates the preceding approach to statement fusion and array contraction—as imple-

mented in the A–ZPL compiler—by comparison to commercial F90/HPF compilers and hand-coded

C code. Furthermore, we examine the transformations’ effect on memory use and their relative

impact on run-time performance. Finally, we evaluate how their interaction with communication

optimizations effect performance.
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INPUT: C : a set of m unconstrained distance vectors, each of size n
OUTPUT: p : a loop structure vector of size n (loop i iterates over array dimension �pi� in the
direction of the sign of pi)

FIND-LOOP-STRUCTURE(C)

1 for j � 1 to n do �initialize unassigned mask�
2 bj � true �bj � true � array dimension j has not yet been assigned to a loop�
3 end for
4 for i � 1 to n do �iterate over loops�
5 solution � false;
6 for j � 1 to n do �iterate over array dimensions�
7 if bj then

8 d �
��
�

�1 if �u 	C�uj � 0
�1 if �u 	C�uj � 0 and �u 	C�uj � 0

0 otherwise
9 if d � 0 then �can loop i iterate over dimension j?�

10 bj � false
11 pi � jd
12 C �C��u 	C�uj � 0�
13 solution � true
14 continue i loop
15 end if
16 end if
17 end for
18 if !solution then
19 return NOSOLUTION �no dimension found for loop i�
20 end if
21 end for
22 return p

Figure 4.7: Algorithm to find a legal loop structure vector given a set of unconstrained distance
vectors from intra-fusible-cluster data dependences.
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The benchmark programs we use to evaluate our transformations represent typical parallel ar-

ray language programs. The SP application and EP kernel belong to the NAS parallel benchmark

suite [BBB�94, BHS�95]. SP solves sets of uncoupled scalar pentadiagonal systems of equations;

it is representative of portions of CFD codes. EP generates pairs of Gaussian random deviates,

and it is considered “embarrassingly parallel.” EP characterizes the peak realizable FLOPS of a

parallel machine. Tomcatv is a SPEC FP95 benchmark that performs vectorized mesh generation.

The Simple code solves hydrodynamics and heat conduction equations by finite difference meth-

ods [CHL78]. The Fibro application uses mathematical models of biological patterns to simulate

the dynamic structure of fibroblasts [DLMW95]. The Frac code generate fractal images. These

benchmarks only benefit from full contraction (i.e., all array dimensions). Chapter 6 gives partial

contraction performance data.

4.5.1 Comparison to Commercial Compilers

In order to assess the state of the art, we determine how aggressively current commercial array

language compilers perform statement fusion and array contraction. We examine compilers for

F90 and HPF (a parallel superset of F90) because F90 is the array language to which the greatest

development effort has been devoted.

The developers of commercial compilers do not advertise the specific optimizations that their

products perform, so we infer their ability to perform statement fusion and array contraction by

studying compiler output for a set of carefully selected code fragments, shown in Figure 4.8. In all

cases, arrays B, T1 and T2 are not live beyond the given code fragments, while D is. The fragments in

(1), (2) and (3) test a compiler’s ability to perform statement fusion to exploit temporal locality. The

fragments differ in the data dependences they contain. The fragments in (4) and (5) test a compiler’s

ability to eliminate compiler temporaries, and (6) and (7) test the same for user temporaries, in this

case array B. Fragment (8) contains two user arrays that can be contracted if contraction of the

compiler array for the third statement is sacrificed. The fragment tests whether a compiler properly

weighs this tradeoff. Figure 4.1 summarizes whether each compiler properly fused (and in some

cases contracted arrays) in each code fragment.

First, observe that the PGI and IBM compilers appear not to perform any statement fusion (i.e.,
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D(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m)

C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m) (1)

D(1:n,1:m) = A(0:n-1,1:m)+A(0:n-1,1:m)

C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m) (2)

D(1:n,1:m) = A(0:n-1,1:m)+C(0:n-1,1:m)
C(1:n,1:m) = A(1:n,1:m)*A(1:n,1:m) (3)

A(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m) (4)

A(1:n,1:m) = A(0:n-1,1:m)+A(0:n-1,1:m) (5)

B(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m)
C(1:n,1:m) = B(1:n,1:m) (6)

B(1:n,1:m) = A(1:n,1:m)+A(1:n,1:m)+C(0:n-1,1:m)
C(1:n,1:m) = B(1:n,1:m) (7)

T1(1:n,1:m) = B(1:n,1:m)
T2(1:n,1:m) = B(1:n,1:m)

A(1:n,1:m) = A(2:n+1,1:m) + T1(2:n+1,1:m) + T2(2:n+1,1:m)
(8)

Figure 4.8: Code fragments to evaluate Fortran 90 and HPF compiler optimizations.

each array statement compiles to a single loop nest). The implementors hoped to leverage the

optimizations performed by the back end Fortran 77 compiler, which does in fact perform fusion.

Unfortunately, the back end compiler does not perform contraction because it was not designed to

compile scalarized array language programs. Most of the compilers successfully eliminate compiler

temporaries. This is not surprising given that it requires only a simple local analysis, but additional

experiments (Section 4.5.4) show that this transformation alone is not sufficient. Though the APR

compiler appears to perform fusion for locality and compiler array contraction, it is unable to fuse

loops that carry anti-dependences.

Finally, notice that the Cray F90 compiler appears to perform both statement fusion and ar-

ray contraction, but there are circumstances under which it fails. The compiler is unable to fuse

statements where the resulting loop nest would contain loop-carried anti-dependences. As a result,

fusion does not occur in either (3) or (7), in the latter case inhibiting contraction. We also infer

that the compiler considers contraction of compiler and user temporary arrays separately, since it
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Table 4.1: Observed behavior of five array language compilers. A
�

indicates that the compiler
produced the proper fused/contracted code.

compiler user trade-
fusion temps temps off

compiler (1) (2) (3) (4) (5) (6) (7) (8)
PGI HPF 2.1

� �
IBM XLHPF 1.2

� �
APR XHPF 2.0

� � �
Cray F90 2.0.1.0

� � � � �
A–ZPL 1.13

� � � � � � � �

contracts the compiler temporary in (8) at the expense of contracting the two user temporaries. The

Cray compiler probably never inserts compiler temporaries when a single statement does not require

it, even if this transformation would enable the contraction of multiple other arrays. The technique

we describe always inserts compiler arrays, and it treats compiler and user arrays together as candi-

dates for contraction. If a single statement does not truly require a compiler array, our algorithm is

guaranteed to contract it unless a more favorable contraction is performed that prevents it.

4.5.2 Comparison to Hand-coded

A successful array language compiler will produce scalar code comparable to that of a skilled scalar

language programmer. We now compare code produced by the A–ZPL compiler with equivalent

programs written in a scalar language. Figure 4.2 summarizes for each of the six benchmarks

the number of static arrays appearing in the compiled code with and without array contraction.

Note that within each code, nearly all arrays are approximately the same size. We see that all

compiler-generated arrays have been eliminated. The benefit of this is that programmers can better

comprehend the memory use of their code when the compiler only infrequently introduces arrays.

Figure 4.2 shows a substantial reduction in the number of static arrays. All the arrays are eliminated

in EP, and in all but one of the other benchmarks more than half are eliminated.

The final column in Figure 4.2 gives the number of arrays that appear in equivalent scalar lan-

guage codes. The scalar language codes are all publicly available C or Fortran 77 programs written

by third parties. The compiler-generated code has the same or fewer arrays on all the benchmarks
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Table 4.2: Static arrays contracted (categorized as compiler/user arrays). Fibro was developed in
A–ZPL, so no equivalent scalar version exists.

array language scalar
application w/o contr. w/ contr. % change lang.
EP 22(0/22) 0(0/0) -100.0 1
Frac 8(0/8) 1(0/1) -87.5 1
SP 181(18/163) 56(0/56) -69.1 48
Tomcatv 19(4/15) 7(0/7) -63.2 7
Simple 85(20/65) 32(0/32) -62.4 32
Fibro 49(0/49) 27(0/27) -44.9 n/a

except SP, which requires a form of partial contraction not yet supported. Despite this shortcoming,

SP still benefits from a substantial performance improvement, as we see in Section 4.5.4.

4.5.3 Effect on Memory Usage and Problem Size

While the preceding section uses static array counts to suggest that contraction conserves memory,

here we consider dynamic data to discover more precisely how memory conservation from array

contraction enables larger problems to be solved in a fixed amount of memory. The degree by

which contraction allows larger problems to be solved is an important issue for memory bound

applications. In the following we assume that for a single program on a particular machine: (i) all

arrays are the same size, which we call the problem size, (ii) all array elements are the same size, and

(iii) a constant amount of memory is available for array allocation independent of problem size. The

degree by which the maximum problem size scales due to contraction is the ratio of the maximum

problem size after and before contraction, sa
sb

. Given the above assumptions and that maximum

problem size is inversely proportional to the maximum number of simultaneously live arrays, l, the

scaling factors becomes lb
la

. We subtract 1 and multiply by 100 to convert the maximum problem

size scaling factor to percent change,

C�lb� la� � 100� lb� la
la

�

The first columns of Figure 4.3 give the dynamic lb and la values and the calculated C value for each

benchmark.
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Table 4.3: Effect of contraction on maximum achievable problem size on single IBM SP-2 and Cray
T3E nodes.

IBM SP-2 maximum problem size Cray T3E maximum problem size
app. lb la C w/o contr. w/ contr. % change (vol) w/o contr. w/ contr. % change (vol)
EP 22 0 ∞ 219 ∞ ∞�∞� 216 ∞ ∞�∞�
Frac 8 1 700.0 15312 57302 274.3(1300.7) 14092 39872 183.0(700.7)
Tomcatv 19 7 171.4 9292 15302 64.7(171.2) 12932 21282 64.6(170.9)
Fibro 49 27 81.5 5832 7902 35.5(83.6) 5722 7742 35.3(83.1)
SP 23 17 35.3 743 813 9.5(31.1) 913 1013 11.0(37.7)
Simple 40 32 25.0 6402 7152 11.7(24.8) 6232 7022 12.7(27.0)

To confirm the above analysis, we experimentally determine for each benchmark the largest

problem size that fits on a single node of the Cray T3E and the IBM SP-2. Both machines have

operating system facilities to limit the process size, so we found the largest problem size that does

not result in a memory allocation failure. Columns seven and ten of Figure 4.3 give the change

in problem size, both along one dimension of the problem domain and in total data volume. The

experimental data shows that these applications respect the above assumptions, for the C value

accurately predicts the change in problem volume. The one exception is Frac on the SP-2, which

violates assumption (ii). EP, in which all arrays are eliminated, clearly benefits the most from

contraction because the contracted form uses a constant amount of memory, independent of the

problem size. The other applications’ changes in problem size vary from 10% to 274% along a

single dimension or 25% to 1300% in total volume.

4.5.4 Run-time Performance

This section considers the run-time performance impact of array contraction and statement fusion.6

Though we discuss only the relative effect of these transformations, other studies have shown that the

A–ZPL compiler produces code that performs within 10% of hand-coded C plus message passing

and generally better than HPF [CCL�98a, LSA�94, LS94a, Ngo97].

In order to better understand the performance contributions of fusion and contraction, we mea-

sure execution time using several different optimization strategies.

6Additional performance data appears in an earlier article by the author [LLS98].
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baseline : no fusion or contraction transformations are performed

cc : only compiler inserted arrays are considered for array contraction

ca : all arrays are considered for array contraction

ca+f : all arrays are considered for contraction and additional statement fusion is performed to

improve locality

Figures 4.9, 4.10 and 4.11 show the execution time improvement of each transformation relative

to the baseline for each benchmark for a varying number of processors on the Cray T3E, IBM SP-2

and Intel Paragon. Execution times are the best of three trials on the T3E and Paragon and of at least

six trials on the SP-2, a machine that suffers from great performance variance from trial to trial. So

that we may neutralize the effect of communication masking all other performance characteristics

on large processor sets, we scale the problem sizes with the number of processors (i.e., the amount

of data per processor remains constant as the number of processors increases).

These graphs demonstrate that performing contraction on both compiler and user arrays in array

languages is essential. The predominant characteristic of the graphs is that ca dominates the other

transformations. The elimination of a large portion of the compiler and user arrays by contraction

drastically improves temporal locality, always resulting in a significant performance boost (up to

400% on one application). Fibro on the SP-2 does not benefit from contraction for large number

of processors because of interactions with communications optimizations, discussed in the next

section. In the larger applications, contraction of only compiler arrays, cc, provides a substantive

performance enhancement (up to 30%), but it is only a fraction of the potential contraction benefit.

The smaller benchmarks, such as Fibro, EP and Frac, require no compiler arrays, so they do not

benefit from cc. Clearly, transformation cc does not sufficiently address the problem of unnecessary

temporary arrays in array languages.

As the number of processors, p, varies, certain trends become evident. The improvement due

to contraction in EP and Frac is effectively independent of the number of processors because these

codes scale nearly perfectly with p. The improvement due to fusion and contraction grows with p

for some programs, such as Simple and Tomcatv on the SP-2, when the transformations improve
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portions of the program that make up a larger fraction of total execution time as p grows (i.e., the

transformations improve portions of the code that do not scale well with p).

The performance improvement for a transformation decreases with p when the transformation

improves a portion of the code that makes up a smaller fraction of total execution time as p increase.

This happens when some other segment of the code is not scaling well and consumes a larger

fraction of total execution time as p increases. SP exhibits this behavior because only portions

of the code that scale well benefit from the transformations. When both scaling and non-scaling

segments of a code benefit from the transformations, machines characteristics (e.g., the relative

costs of cache misses, communication and floating point operations) dictate the trends. This is

exemplified by Tomcatv, which shows level, increasing and decreasing trends on the three machines

in our experiments.

In these experiments, ca+f produces very little benefit beyond that of ca. This is because the

great many opportunities for contraction result in very aggressive fusion.

4.5.5 Interaction with Communication Optimization

In this section, we demonstrate that statement fusion interacts with communication optimizations

and for this reason should be performed at the array level. Some optimizations cannot be performed

practically at the scalar level because they interact with other transformations that can only occur

at the array level. If an optimization that interacts with array-level transformations is relegated

to a scalar compiler, either the array-level transformations must understand and reason about the

optimization behavior of the scalar compiler or vice versa. It is unlikely that scalar compilers can

understand the optimization strategy of all the compilers that compile to it, so the array compiler

must consider scalar optimizations when performing array transformations, effectively moving the

scalar transformations into the array compiler.

To achieve efficient parallel execution, compilers must often perform aggressive communication

optimizations [CS97], such as redundancy elimination, message combining and pipelining. In some

cases, these communication optimizations are at odds with fusion for contraction. For example,

pipelining hides latency by separating the send and receive portions of communication with com-

putation, but fusion may collect into a single loop some of the statements that could be used to hide
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Figure 4.9: Benchmark performance on Cray T3E.
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Figure 4.10: Benchmark performance on IBM SP-2.
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Figure 4.11: Benchmark performance on Intel Paragon.
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latency, potentially disabling overlap. The experiments presented thus far resolve this conflict by

favoring fusion, i.e., fusion is never prevented by communication optimizations. We consider an

alternative strategy in which communication optimizations are favored, i.e., fusion cannot be per-

formed if it reduces the benefit of communication optimization. This simulates the performance

of a compiler that performs contraction after scalarization. Note that message vectorization never

conflicts with fusion, so it is always performed.

As the amount of fusion increases, the potential for conflict with communication optimization

grows. Figure 4.12 illustrates this effect. On the T3E, when favoring communication optimizations

over fusion for contraction, Simple, Tomcatv, SP and Fibro suffer a slowdown of 25.4%, 22.7%,

9.6% and 5.1%, respectively. On the SP-2, they slowdown by 31.8%, 66.5%, 10.5% and -10.6%,

respectively. On the Paragon, they slowdown by 7.5%, 8.5%, 5.0% and 0.9%. The first three

programs slowdown significantly because the communication optimizations disable a large number

of array contraction opportunities without producing comparable communication benefits. Only one

fusion for locality opportunity and no contraction opportunities are lost by favoring communication

optimizations in Fibro. It slows down little and in one case it speeds up, because of the additional

communication optimization. EP and Frac do not slowdown because they are small codes that do

not benefit from communication optimization, with or without fusion.

We have not demonstrated that favoring contraction is optimal, but we have shown that if a

choice is to be made, fusion for contraction should be favored. This suggests that it would be very

difficult to perform communication optimizations if fusion and contraction occur after scalarization.

The communication transformations would have to understand contraction well enough to optimize

without disabling it, since it is unlikely that the scalar compiler could reason about communication

primitives once they are scalarized. The Fibro data suggests that there are delicate tradeoffs that only

an integrated approach to fusion and communication optimization can address, which would further

complicate performing fusion at the scalar level. Furthermore, we expect to find that integration

will become even more important on machines with low cost synchronization in hardware (e.g.,

SGI Origin, Sun E10000). Thus, these results support our claim that these optimizations for array

languages should be performed at the array level, for this is the only practical point during which

they may be performed together.
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Figure 4.12: Execution time when communication optimization is favored.

4.6 Related Work

The problem of optimizing array languages at the array level has recently received attention by

others. Hwang et al. describe a scheme for array operation synthesis [HLJ95]. Multiple instances

of element-wise F90 array operations such as MERGE, CSHIFT, and TRANSPOSE are combined

into a single operation, reducing data movement and intermediate storage. Their work does not

address the inter-statement intermediate array problem except to substitute an intermediate array’s

use by its definition. This statement merge optimization [Ju92] enables more operation synthesis,

but it is not always possible, and it potentially introduces redundant computation and increases

overall program execution time. Roth and Kennedy have independently developed a similar array

based data dependence representation for F90, and they describe its use in scalarization [RK96].

They do not address the fusion for contraction problem.

Loop fusion in the context of scalar programming languages such as Fortran 77 is well un-
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derstood [Wol96]. Though most work only considers pairwise fusion, some research addresses

collective loop fusion, as we do. Sarkar and Gao [SG91] transform loop nests by loop reversal, in-

terchange and fusion to enable array contraction. They target multiprocessors and exploit pipelining

by executing producer and consumer loops on different processors, so they are free to ignore all

but flow dependences. Because we choose to distribute iteration spaces instead, preservation of all

types of dependences is critical to our solution. Gao et al. [GOST92] describe another technique

for loop fusion based on a maxflow algorithm. The technique requires its input loop nests to be

identically controlled, and it does not perform loop reversal nor interchange to enable additional

fusion. Furthermore, it is unclear what the algorithm does when a potentially contractible array is

consumed by multiple loop nests. Our collective scheme performs reversal, interchange and fusion

simultaneously to enable contraction.

Carr and Kennedy recognized the importance of keeping array values in scalars through scalar

replacement [CK94], which is similar to array contraction in that some array references become

scalar references, but array allocation is not eliminated (i.e., memory usage is not reduced). Their

focus is in recognizing the opportunity in a scalar loop nest, while ours is in enabling the opportunity

in an array language compiler via statement fusion.

Many techniques for improving locality by loop transformations have appeared in the litera-

ture [CMT94, KM92, MA97, WL91]. Much of this work addresses the issue of managing the

conflicting goals of improving locality without sacrificing parallelism. This is a far less important

issue in an array language compiler, for the compiler can assume that only the loops that it gen-

erates need to be parallelized; user loops can remain sequential. Here, we have assumed that all

dimensions of all arrays are distributed and are a potential source of parallelism.

Presentations of the conventional use and construction of dependence graphs, upward exposed

uses, live variable information, etc. appear in the compiler canon [ASU88, Muc97, Wol96].

4.7 Summary

We have presented the problem of unnecessary arrays in array languages, offered an array-level

solution via statement fusion and array contraction, and given a comparative evaluation of it. We

find that the problem significantly impacts performance, yet existing compilations systems generally
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fail to address it. We define novel machinery to enable our array-level solution, and we demonstrate

that it is not only effective but that it also permits integration with other array-level optimizations,

such as communication pipelining.

Despite the failings of existing compilation systems, it is clear that the unnecessary array prob-

lem is a tractable one that may be reliably solved by a compiler on the programmer’s behalf. The

next chapter considers a problem that cannot practically be solved entirely by the compiler, inspiring

new language abstractions.
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Chapter 5

PIPELINED PARALLEL WAVEFRONT COMPUTATIONS

Despite the successes of the previous chapter, it is impractical to expect the compiler to derive

high quality code from any program representation. This chapter describes wavefront computations

and their pipelined parallel implementation and argues that carefully chosen language abstractions

greatly increase the likelihood of effective parallel implementation by the compiler without unduly

increasing the programmer’s burden.

5.1 Motivation

Wavefront computations are characterized by a data dependent flow of computation across a data

space. The value computed in each iteration is a function of values computed in previous iterations,

as in the code fragment of Figure 5.1(a). Wavefronts are common, and the scientific applications in

which they appear often demand parallel execution [KBA92, SSV99]. Although the dependences

they contain imply serialization, it is well known that wavefront computations admit efficient, par-

allel implementation via pipelining [Cyt86, Wol96]. Each processor of a pipelined implementation

computes partial—rather than complete—results before sending the results on to dependent neigh-

boring processors, as illustrated by the array distributed across four processors in Figure 5.1(b),

exploiting parallelism along the direction of the wavefront. Nevertheless, the question of how wave-

front computations are best presented to the compiler for the effective generation of pipelined par-

allel code remains open.

This chapter introduces an A–ZPL language abstraction for representing wavefront computa-

tions and compares it to other representations: programmer-implemented via message passing and

compiler-discovered via automatic parallelization. The general parallel programming implications

of all three approaches are well known, but not in the context of wavefront computations. They are

all potentially efficient, but each has a downside. Message passing programming requires consid-
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do j = 2, m
do i = 2, n

a(i,j)=(a(i,j)+a(i-1,j))/2.0
enddo

enddo

(a)

➩ ➩

❶ ❷

❸ ❹

(b)

Figure 5.1: (a) A simple wavefront computation and (b) its pipelined parallel implementation on
four processors.

erable expertise and time to develop, debug, and tune. The benefits of automatic parallelization are

only realized when a program is written in terms that the compiler is able to parallelize. And high-

level parallel languages only benefit those who are willing to learn them. We assess these issues in

the context of pipelining wavefront computations, and argue that A–ZPL offers a highly effective

solution.

We evaluate the three approaches by using each to develop four wavefront kernels (Figure 5.2)

on two dissimilar parallel machines (the IBM SP-2 and Cray T3E). The kernels are representative of

a large class of wavefronts (e.g., those in SWEEP3D [Accb], SIMPLE[CHL78], and Tomcatv [Sta]),

and they are sufficiently simple that they allow us to focus on the first-order implications of their par-

allelization. We use the Message Passing Interface (MPI) [SOHL�98] as an illustration of message

passing, and High Performance Fortran (HPF) [Hig97]1 of automatic parallelization.

This work provides a quantitative and qualitative assessment of developing parallel wavefront

computations by the three approaches. Furthermore, we compare the development experience and

performance of these approaches via a common set of kernels. The evidence we gather both confirms

widely held beliefs about these representations and challenges conventional wisdom. We find that

1HPF is not strictly an automatically parallelized language, but it lacks intrinsic or annotational support for pipelining,
relegating pipelining to an automatic parallelization/optimization task.
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do j = 2, m
do i = 2, n

a(i,j) = (a(i,j)+
a(i-1,j))/2.0

enddo
enddo

(a) WF/1D/VERT

do j = 2, m
do i = 2, n

a(i,j) = (a(i,j)+
a(i,j-1))/2.0

enddo
enddo

(b) WF/1D/HOR

do j = 2, m
do i = 2, n

a(i,j) = (a(i,j)+
a(i-1,j)+
a(i,j-1))/3.0

enddo
enddo

(c) WF/2D

do j = 2, m
do i = 2, n

a(i,j) = (a(i,j)+
a(i-1,j))/2.0

enddo
enddo
do j = 2, m

do i = 2, n
a(i,j) = (a(i,j)+

a(i,j-1))/2.0
enddo

enddo

(d) WF/1D/BOTH

Figure 5.2: Wavefront kernel computations.

the A–ZPL language-level representation is both simple to develop and consistently efficient. In

addition, our study reveals surprising characteristics of commercial HPF compilers.

This chapter is organized as follows. The next section describes the representations that we

consider and summarizes our experiences with their use. Section 5.3 describes the compile-time and

run-time implementations of the relevant features of A–ZPL, and Section 5.4 presents performance

data for each representation. The final two sections present related work and summarize.

5.2 Representing Wavefronts for Parallel Execution

This section summarizes the three parallel wavefront representations we consider. Because MPI and

HPF are well known, we only address the A–ZPL representation in detail. In addition, we describe

our experiences using each representation to implement the kernel computations in Figure 5.2.
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5.2.1 MPI

Although often efficient, message passing—in this case MPI—programs are laborious to develop,

for the programmer must manage every detail of parallel implementation. This is illustrated by

the 626-line kernel of the ASCI SWEEP3D benchmark [Accb], only 179 lines of which are funda-

mental to the computation.2 The remainder manage the complexities of implementing pipelining

via message passing. Furthermore, by obscuring the true logic of a program, complexity hinders

maintenance and modification. Conceptually small changes may result in substantially different

implementations.

A message passing implementation of pipelining is conceptually simple, but it is surprisingly

complex and difficult to develop in practice. As an illustration, the C+MPI WF/2D kernel is 40

lines long, which is large when compared to the single loop nest that it implements. In addition,

its development, debugging, and performance tuning consumed three hours, a long time for such a

trivial computation. Naturally, with message passing even moderate computations will be lengthy

and slow to develop.

Furthermore, despite the conceptual similarity between the four kernels, the four MPI imple-

mentations differ in significant ways, such as location of communication, allocation of ghost cells,

and indexing. The structure of each code is closely tied to the distribution of data and the depen-

dences that define the wavefront, so there is little code reuse between the four implementations.

In addition, we are faced with the problem of finding the best tile size (i.e., the granularity of the

pipeline). In order to contain development time, we dispensed with a dynamic scheme [LJ99] in fa-

vor of direct experimentation for each kernel on each machine. Naturally, the results will not extend

to other machines and different problem sizes.

5.2.2 HPF

An HPF program is a sequential Fortran 77/90 program annotated by the programmer to guide data

distribution (via DISTRIBUTE) and parallelization (via INDEPENDENT) decisions [Hig97]. The HPF

standard does not include annotations to identify computations that may be pipelined, but Gupta et

al.. indicate that the IBM xlHPF compiler for the IBM SP-2 automatically recognizes and optimizes

2See the next chapter for more details about SWEEP3D.
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them [GMS�95]. Some forms of task-level pipelining are supported by HPF2, but no commercial

compilers fully support the new standard. Furthermore, a representation of this form would look

more like an MPI code, sacrificing the benefits of HPF.

HPF programmers need not manage per processor details and explicit communication. Never-

theless, they direct the compiler’s parallelization via annotations. HPF lacks annotations to identify

wavefront computations, so the compiler is solely responsible for recognizing and optimizing them

from their scalar representations [HKT91, RP89]. We consider the Portland Group, Inc. PGHPF

and IBM xlHPF compilers separately, below.

PGHPF

The HPF compiler from Portland Group, Inc. (PGHPF) does not perform pipelining. We determine

this by examining the intermediate message passing Fortran code produced by the -Mftn compiler

flag. The performance data will confirm this.

PGHPF strictly obeys the INDEPENDENT annotations, redistributing arrays before and after loop

nests so that all the annotation specified parallelism is exploited. An implication of this is that

parallel loops exploit parallelism—at the cost of data redistribution—even when the user specified

data distribution precludes parallelism. In this way PGHPF extracts some parallelism from two of

the kernels—as we will see in the section on performance evaluation—but it is not competitive with

a pipelined implementation.

Another implication of strictly respecting annotations is that they must be placed very carefully.

If an INDEPENDENT annotation is placed on the inner loop in WF/1D/HOR, the compiler will re-

distribute the array inside the j loop, resulting in performance three orders of magnitude worse than

that of the loop nest in WF/1D/VERT. The programmer may interchange the two loops, making the

outer loop INDEPENDENT, but the resulting array traversal will have poor cache performance.

While the loop nests in WF/1D/VERT, HOR, and BOTH can use redistribution to exploit par-

allelism, that in WF/2D can not, for it contains dependences in both dimensions. Only pipelining

will extract parallelism from this code. We found that because the loop contains no INDEPENDENT

annotations, every array element read is potentially transmitted in the inner loop. It appears that only

the source and destination processors of each scalar communication wait while the communication
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takes place; thus, other processors are permitted to compute ahead, limited only by data depen-

dences. This realizes a crude form of fine grain pipelining when arrays happen to be traversed in the

right way. Despite this, the inner loop communication prevents this code from being competitive

with a true pipelined implementation.

XLHPF

A published report indicates that IBM xlHPF performs pipelining [GMS�95]. The compiler does

not provide an option for viewing the intermediate message passing code and the parallelization

summary excludes this information, so we experimentally confirm that the compiler does indeed

perform pipelining. Specifically, we observe that an HPF wavefront computation has single node

performance comparable to the equivalent Fortran 77 program and that it achieves speedup beyond

this for multiple processors.

Unlike PGHPF, xlHPF only exploits parallelism on INDEPENDENT loops that iterate over a dis-

tributed dimension. This fact and the pipelining optimization result in good parallel performance

for all of the kernels. Despite this, we find that the pipelining optimization fails on even mod-

estly more complex wavefronts. For example, loops that iterate from high to low indices or con-

tain non-perfectly nested loops are not pipelined. Certainly, they could be. But the lesson is that

when optimizing arbitrary code, certain cases or idioms may easily be overlooked. Conversely, a

language-level solution makes explicit both the semantic and performance implications of a compu-

tation.

5.2.3 A–ZPL

Here, we augment the A–ZPL discussion of Chapter 2, introducing high-level language features for

pipelining wavefront computations.

Semantics

Array language semantics dictate that the right-hand side of an array statement must be evaluated

before the result is assigned to the left-hand side. As a result, an array language compiler will

not generate a loop that carries a true data dependence to a non-lexically forward statement (i.e.,
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[2..n,1..n] a := 2 * a@north;

(a)

for i� n downto 2 do

for j� 1 to n do

ai� j � 2�ai�1� j

(b)

1 1 1 1 1
2 2 2 2 2

a = 2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

(c)

[2..n,1..n] a := 2 * a’@north;

(d)

for i� 2 to n do

for j� 1 to n do

ai� j � 2�ai�1� j

(e)

1 1 1 1 1
2 2 2 2 2

a = 4 4 4 4 4
8 8 8 8 8

16 16 16 16 16
(f)

Figure 5.3: A–ZPL array statements (a and d) and the corresponding loop nests (b and e) that
implement them. The arrays in (c and f) illustrate the result of the computations if array a initially
contains all 1s.

a dependence from a statement to itself or to a preceding statement). For example, the A–ZPL

statement in Figure 5.3(a) is implemented by the loop nest in 5.3(b). The compiler determines that

the i-loop must iterate from high to low indices in order to ensure that the loop does not carry a true

data dependence. If array a contains all 1s before the statement in 5.3(a) executes, it will have the

values in Figure 5.3(c) afterward.

In wavefront computations, the programmer needs the compiler to generate loop nests with non-

lexically forward loop-carried true data dependences. This may be achieved via partial scalarization

in which the programmer explicitly inserts a loop nest to carry the dependence at the source level,

as in the code of Figure 5.4(a). Unfortunately, this sacrifices the benefits of the array language

representation and relegates the task of pipelining to automatic parallelization, which we address

above.

Instead, we introduce a new operator, called the prime operator, that allows a programmer to

reference values written in previous iterations of the loop nest that implements the statement con-

taining the primed reference. Thus, the prime operator has the effect of constraining the structure

of loop nests. For example, the A–ZPL statement in Figure 5.3(d) is implemented by the loop nest

in 5.3(e). In this case, the compiler must ensure that a loop-carried true data dependence exists

due to array a; thus, the i-loop iterates from low to high indices. If array a contains all 1s before



71

for j := 2 to n do
[j,2..n] begin

r=aa*d@north;
d=1.0/(dd-aa@north*r);
rx=rx-rx@north*r;
ry=ry-ry@north*r;

end;
end;

(a)
[2..n,2..n] scan

r=aa*d’@north;
d=1.0/(dd-aa@north*r);
rx=rx-rx’@north*r;
ry=ry-ry’@north*r;

end;

(b)

Figure 5.4: A–ZPL representations of fragments from SPEC Tomcatv. (a) Using an explicit loop to
express the wavefront. (b) Using a scan block and the prime operator. Arrays r, aa, d, dd, rx and
ry are all n�n.

the statement in 5.3(d) executes, it will have the values in Figure 5.3(f) afterward. In general, the

directions on the primed array references define the orientation of the wavefront.

The prime operator alone cannot represent wavefronts such as the Tomcatv code fragment in

Figure 5.4(a), because it only permits loop-carried true dependences from a statement to itself. We

introduce a new compound statement, called a scan block, to allow multiple statements to partici-

pate in a wavefront computation. Primed array references in a scan block refer to values written by

any statement in the block, not just the statement that contains it. For example, the A–ZPL code

fragment in Figure 5.4(b) uses a scan block and the prime operator to realize the computation in

Figure 5.4(a) without an explicit loop. The array reference d’@north refers to values from the

previous iteration of the loop that iterates over the first dimension. Thus, the primed @north ref-

erences imply a wavefront that travels from north to south. Just as in existing array languages, a

non-primed reference refers to values written by lexically preceding statements, within or outside

the scan block.
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The notation may at first appear awkward. It is important to note, however, that experienced A–

ZPL programmers are already well accustomed to manipulating arrays atomically and shifting them

with the @-operator. They must only learn the prime operator, which is motivated by mathematical

convention where successor values are primed. In the same vein, array languages such as Fortran 90

can be extended to include the prime operator.

The primed array references we have looked at thus far have been single cardinal directions (i.e.,

directions in which the offset for only one dimension is nonzero, for example, representing north,

south, east or west). When non-cardinal directions or combinations of different directions appear

with primed references, the character of the wavefront is less obvious, but the meaning of the code

is still clear. The performance implications of such codes are considered below.

Legality

There are a number of statically checked legality conditions: (i) Primed arrays in a scan block must

also be defined in the block; (ii) the directions on primed references may not over-constrain the

wavefront, as discussed below; (iii) all statements in a scan block must have the same rank (i.e.,

they are implemented by a loop nest of the same depth)—this precludes the inclusion of scalar

assignment in a scan block; (iv) all statements in a scan block must be covered by the same region;

and (v) parallel operators’ operands other than the shift operator may not be primed; this is essential

because array operators are pulled out of the scan block during compilation.

An over-constrained scan block is one for which a loop nest can not be created that respects the

dependences arising from the at-references. For example, primed @north and @south references

over-constrain the scan block because they imply both north-to-south and south-to-north wavefronts,

which are contradictory. Section 5.3 further restricts legality for performance reasons.

Performance Model Implications

Recall that the A–ZPL performance model allows programmers to reason about the coarse parallel

performance of their codes without actually executing them. Most importantly, the A–ZPL perfor-

mance model dictates that parallelism is implicit in operations on arrays. It is for this reason that

the scalarized Tomcatv code fragment in Figure 5.4(a) is unsatisfactory. The performance model
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tells us that each row operation will be parallel, but no parallelism exists between rows. The primed

array reference solution in Figure 5.4(b) does not suffer from this problem, for the code—like most

A–ZPL statements—operates on whole arrays and the degree of parallelism is principally limited

by the extent of the operation. The programmer is assured that the compiler will exploit all the

parallelism contained in the code.

Just as with other A–ZPL array operators, programmers may wish to reason more precisely about

wavefront performance. In order to do this, the programmer must classify—paralleling the function

of the compiler—each dimension of a scan block’s data space as one of the following: fully parallel,

sequential, or pipelined parallel. Fully parallel dimensions permit a fully parallel implementation

along that dimension. Sequential dimensions must be executed according to some serial order. And

pipelined parallel dimensions permit pipelining along that dimension as in Figure 5.1(b).

In most cases classifying each dimension is trivial. The programmer need only examine the

directions associated with primed array references of a scan block. For example, suppose that

corresponding direction entries are all nonnegative or non-positive. Clearly, any dimension for

which corresponding direction entries are zero is fully parallel, because the loop that will eventually

iterate over this scan block will not carry any dependences. We want at least one parallel dimension,

so that pipeline can do work along that dimension as the outer loop of the pipeline. If a fully parallel

dimension does not exist, we select one of the sequential dimensions for this purpose. Specifically,

in this case we choose the outermost non-fully parallel dimension for cache-performance reasons.

The remaining dimensions are pipelined parallel.

Below, we will use the following code fragment with different direction instantiations to illus-

trate how programmers may reason about their wavefront computations.

a := (a’@d1 + a’@d2)/2.0;

Example 1: Let d1=d2=��1�0�. The second dimension is fully parallel, so the first dimension is

pipelined parallel.

Example 2: Let d1=��1�0� and d2=�0��1�. Neither of the dimensions are fully parallel, so the first

dimension is sequential and the second is pipelined parallel. If the first dimension is distributed, the

processors across which it is distributed will be wasted.
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Example 3: Let d1=�0��1� and d2=�0�1�. This code is clearly over-constrained, and it will produce

a compile-time flag indicating this.

Summary

We have presented a simple array language extension that permits the expression of loop-carried

true data dependences, for use in pipelined wavefront computations. It is simple for programmers

to reason about the semantics, legality and parallel implications of their wavefront code.

Contrast this with an optimization-based approach, where the programmer must be aware of the

compiler’s optimization strategy in order to reason about a code’s potential parallel performance.

Without this knowledge, the programmer is poorly equipped to make design decisions. For example,

suppose a programmer writes a code that performs both north-south and east-west wavefronts. The

programmer may opt to distribute only one dimension and perform a transposition between each

north-south and east-west wavefront, eliminating the need for pipelining. This is likely to be much

slower than a fully pipelined solution, guaranteed by our language-level approach.

5.3 Implementation

This section describes our pipelined parallel implementation of primed array references and scan

blocks in the A–ZPL compiler. This discussion builds on the structures and terminology used in

Chapter 4 to implement statement fusion and array contraction. Below, we consider loop generation

and communication generation.

Array statements containing primed array references are internally represented with a multi-

loop structure just like any other array statement. Scan blocks require special consideration because

they must be implemented by a single loop nest, so each scan block is transformed into a single

multi-loop, rather than a sequence of multi-loops.

Unconstrained distance vectors (UDVs) are constructed as described in the last chapter with

one exception. The prime operator transforms what an array language would otherwise inter-

pret as an anti-dependence into a true dependence. In order to achieve this, the unconstrained

distance vectors associated with primed array references are simply negated. For example, the

statement A:=A@(0,1) gives rise to an anti-dependence with the UDV (0,1), while the statement
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A:=A’@(0,1) gives rise to a flow dependence with the UDV (0,-1). These unconstrained distance

vectors and the accompanying array statement dependence graph are used for statement fusion and

array contraction as we have already described. Thus, scan blocks are optimized just like all A–ZPL

array statements.

Tiling is essential for balancing parallelism and communication overhead. Tiling is inhibited—

without data redistribution—when a dimension is distributed and there are certain conflicting entries

(i.e., some positive and negative) in the UDVs associated with primed array references. This is a

result of the fact that data must be transmitted back and forth across the processor boundary of this

dimension, preventing the aggregation of communication. For example, there are conflicting entries

in the second dimension of UDVs ��1�1� and ��1��1�; thus the first dimension can not be tiled

to reduce communication overhead when pipelining the second dimension. Because of this and the

fact that all dimensions are potentially distributed, we require that within a scan block all UDVs

associated with primed references must contain no conflicting entries.

Recall that each dimension is either fully parallel, sequential, or pipelined parallel, as described

in Section 5.2.3. Tiling is used in the sequential and parallel dimensions to create pipeline stages.

The pipelined dimensions are not tiled. The dimensions that are to be tiled are tagged as such in the

multi-loop structure. At code generation time, outer loops are generated for the dimensions that are

to be tiled, and inner loops are generated to iterate over a single tile.

Tile size determines performance, balancing parallelism and communication overhead. Specifi-

cally, smaller tiles increase parallelism but increase communication overhead. The relative cost (in

time) of communication and the wavefront computation determine the appropriate tile size. Nu-

merous models and dynamic schemes have been developed to calculate tile size [OSKO95, ABR96,

DRR96, AR97, ARY98, LJ99], and this is an important component of a language-level solution to

pipelining wavefront computations. Nevertheless, we have not fully implemented this component

in the A–ZPL compiler. In the interim, we manually select tile size at run-time.

The A–ZPL compiler inserts communication for nonlocal references, such as those implied by

the at operator [CS97, Cho99]. The compiler performs a backward traversal of the control flow

graph, inserting communication primitives for the at-references it encounters. Effectively, a receive

is inserted just prior to an at-reference, and a send is inserted just after the preceding definition of
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the referenced array, overlapping communication and computation.3 This scheme is only slightly

modified for primed at-references. First, the communication associated with primed at-references is

associated with the scan block that contains the reference rather than moving them around to overlap

communication and computation. Second, receives appear at the beginning of the scan block and

sends appear at the end. At code generation time, these communication primitives appear within the

outer tile loops and outside the inner tile loops; thus, data is sent and received at the granularity of

the tile.

In summary, the implementation of tiling is very simple, leveraging the existing structures in the

A–ZPL compiler.

5.4 Performance

We gather performance data on two parallel machines: a 272-processor Cray T3E-900 (450MHz

DEC Alpha 21164 nodes) and 192-processor IBM SP-2 (160MHz Power2 Super Chip nodes). We

use a number of compilers in this evaluation: on the T3E, we use the Cray CF90 Version 3.2.0.1

and Portland Group, Inc. PGHPF v2.4-4; on the SP-2, we use IBM xlf Fortran v4.1.0.6, IBM xlHPF

v1.4, IBM xlc v3.1.4.0, and PGHPF v2.1. On both machines we use the University of Washington

zc v1.15 A–ZPL compiler [ZPL]. All compilers are used with the highest optimization level that

guarantees the preservation of semantics.

We study four different representations: C+MPI, A–ZPL, xlHPF, PGHPF. The C+MPI code

is a well-tuned pipelined message-passing program. It represents the (practical) best that can be

achieved on these machines using the C programming language. Because the xlHPF compiler is

only available on the SP-2, we do not have results for it on the T3E.

We use the codes in Figure 5.2 for this evaluation. For all the experiments, the a array is

distributed across a dimension that gives rise to a loop-carried dependence (e.g., the first dimension

in WF/1D/VERT) so as to isolate the impact of pipelining. Although it appears that WF/1D/VERT

and WF/1D/HOR do not require pipelining (i.e., there exists a distribution that permits complete

parallel execution), these kernels may appear in a context that requires a different, less favorable

3A–ZPL actually uses a more portable communication interface than that of send/receive [CCS98], but the simplifica-
tion is sufficiently accurate for this discussion.
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distribution.

We find that the single processor execution times for C+MPI and A–ZPL—which generates C

code—are comparable to that of a sequential C program. Similarly, on a single processor, xlHPF

and PGHPF match sequential Fortran. On the T3E, sequential C code typically executes in twice the

time of comparable Fortran codes, while on the SP-2 this ratio varies with the character of the kernel.

Such disparities between C and Fortran implementations of the same computation are common. In

any case, it is clear that the observed scaling behavior is relative to an efficient baseline.

All the performance data is summarized by the graphs in Figure 5.5. These graphs depict ex-

ecution time, so lower bars indicate better performance. Furthermore, the performance is scaled

relative to C+MPI. First, observe that the A–ZPL performance keeps pace with that of C+MPI. This

indicates that A–ZPL is both performing as well and scaling as well as the hand coded program. At

times the A–ZPL code even surpasses C+MPI, because it performs low level optimizations for more

efficient array access. Consider the PGHPF performance. It is competitive on a single processor for

the WF/1D/VERT and WF/1D/BOTH kernels, but it quickly trails off as the number of processors

increases. This is because, PGHPF redistributes the data to achieve parallelism, which does not

scale. The SP-2 exaggerates this effect, because its high communication costs outweigh the benefits

of redistribution. Furthermore, for WF/1D/HOR and WF/2D significant communication appears in

the inner loop, resulting in abysmal performance (the bars are off the graph!).

XlHPF is competitive with the C+MPI and A–ZPL, because it performs pipelining. The single

processor bars highlight disparities in local computation performance. A–ZPL performs consider-

ably better than any of the others for WF/1D/VERT. We hypothesize that the dependences in this

kernel thwart proper array access optimization by the xl optimizer (used by both the Fortran and

C compilers). The A–ZPL code does not suffer from this, because its compiler generates direct

pointer references rather than using C arrays. When the C+MPI code is modified in this way, its

performance matches A–ZPL. Conversely, A–ZPL is worse for WF/1D/HOR. Again, we believe

this is an optimization issue. When the A–ZPL code is modified to use C arrays rather than pointer

manipulation, it matches HPF. The summary is that when we ignore the differences that arise from

using C versus Fortran, the C+MPI, xlHPF, and A–ZPL kernel performance are comparable.

One might conclude that automatic parallelization (i.e., HPF) is the solution and one should

use the xlHPF compiler. After all, for the evaluation codes it performs very well. This is a poor
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Figure 5.5: Pipelining performance summary. Kernel names are from Figure 5.2. Note that many of
the PGHPF bars are off the scale of these graphs.
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Figure 5.6: Mare pipelined performance data. The graph in (a) is for kernel WF/1D/VERT, while
that in (b) is for the same code except that loops iterate from high to low indices. Note that the
xlHPF performance goes from very good to very bad.

conclusion for two reasons. First, the xlHPF compiler is only available on IBM machines; thus,

any codes written on IBM machines will not be portable. And second, the xlHPF compiler fails to

pipeline all but the simplest of codes. For example, imperfectly nested loops and control flow inhibit

this transformation. Sensitivity to iteration direction is a particularly egregious shortcoming. For

example, if we iterate from high to low indices in the WF/1D/VERT kernel, the xlHPF execution

time balloons, as in Figure 5.6(b). The xlHPF compiler very effectively pipelines simple codes, but

its fragility and lack of portability make it an impractical representation for serious codes.

5.5 Related Work

In a study of parallel performance models, Ton Ngo first suggested the value of language-level

support for pipelining wavefront computations [Ngo97]. This work validates this insight in the

context of a programming language with a well-defined performance model.

It is well known that wavefront codes admit pipelined parallel implementations. Cytron [Cyt86]

and Rogers and Pingali [RP89] describe early experiences doing just this, and many others have

further developed the technique [HKT91, HKT92, SY91, CTY94, AWMC�95, BL99], in partic-

ular how a compiler can automatically pipeline scalar code (e.g., in the context of HPF). In addi-
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tion, considerable applied and theoretical effort has been devoted to discovering the tile size that

optimizes parallelism. Both static [OSKO95, ABR96, DRR96, AR97, ARY98] and dynamic ap-

proaches [LJ99] have been explored. Nevertheless, we are aware of no work that considers the

parallel performance implications of language-level support for pipelining wavefront computations.

Aside from the automatic parallelization work, all the preceding work can be applied to A–ZPL

implementation of pipelining to improve its performance.

5.6 Summary

We have considered several program representations for wavefront computations. The message

passing representation performs well, but it sorely lacks usability. The programmer must write an

unnecessarily long and complex message passing program for even the simplest computations. The

automatically parallelized sequential representation is a very simple representation, but its perfor-

mance is closely tied to the machine on which it is run, the compiler that is used, and the idiosyn-

crasies of the code. In general, the programmer can not be assured that the compiler will generate

an efficient pipelined parallel implementation.

Our experiments suggest that it is impractical for compiler analysis alone to derive an efficient

pipelined parallel implementation of wavefront computations. Accordingly, we have introduced

novel language abstractions, that unambiguously identify the parallelism in wavefront computations;

and we have quantitatively and qualitatively compared them to the alternatives. We show that of the

alternatives considered, only A–ZPL provides both performance and usability.
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Chapter 6

A CASE STUDY: SWEEP3D

This chapter evaluates the A–ZPL design and implementation in the context of a particular appli-

cation, the SWEEP3D benchmark from ASCI. First, we describe the abstract characteristics of the

application; then we consider particular implementations in message passing Fortran and A–ZPL.

Finally, we qualitatively and quantitatively compare these two representations of the SWEEP3D

computation.

6.1 SWEEP3D Overview

The SWEEP3D benchmark comes from the Accelerated Strategic Computing Initiative

(ASCI) [Acca, Accb]. ASCI is a collaboration among the national labs to advance defense-oriented

computer modeling and simulation, including work in hardware, software, and supportive environ-

ments. The SWEEP3D benchmark is intended to represent complete, ASCI-caliber applications in

order to evaluate parallel machines. We have chosen to evaluate SWEEP3D not only because it

highlights the work discussed thus far in this dissertation, but also because the quality of the A–ZPL

implementation is indicative of a significant class of applications, beyond those SWEEP3D models.

SWEEP3D solves a 1-group, time-independent, discrete ordinates, three-dimensional Cartesian

geometry neutron transport problem. The problem space consists of three spatial dimensions, and

one angular dimension, represented by an array of angles [Accb]. All the illustrations in this chapter

exclude the angular dimension for reasons of simplicity and clarity.

Each cell in the three-dimensional space contains four equations in seven unknowns—six faces

plus the cell center—and boundary conditions complete the system of equations. A direct ordered

solver produces a sweep as follows. For each cell, three known spatial inflows, originating at bound-

aries, are used to calculate the cell center and three outflows, providing the inflows for three adja-

cent cells. A cell cannot compute its outflows before its inflows become available, so a wavefront
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(a) (b)

Figure 6.1: A snapshot of a SWEEP3D wavefront traveling across the three spatial dimensions,
from the upper left-hand corner of the front face to the lower right-hand corner of the back face.
The white cells have not yet been computed, the black cells are the most recently computed, and the
gray cell have been computed in the past (lighter cells computed in the more distant past). External
and cross section views appear in (a) and (b), respectively.

of computation travels across the problem space with a recursion dependence in each of the spatial

dimensions [Accb]. The core of SWEEP3D contains eight sweeps, one originating at each corner

of the cube.

Figure 6.1 illustrates a SWEEP3D wavefront. The figure represents a snapshot of a 43 grid of

cells. The white cells have not yet been computed, the black cells have most recently been computed,

and the gray cell have been computed in the past (lighter cells indicating the more distant past). We

assume that the north, west, and front face boundaries are known, so computation begins with the

cell at the upper left-hand corner of the front face. The wave spreads out from there as it travels to

the lower right-hand corner of the back face, as shown in Figure 6.1(a). Figure 6.1(b) shows a cross

section of the same grid at the same instant in time. The interior black cell may only be computed

when its north, west, and front (represented by the box) neighbors have been computed.

An instance of the problem solved by SWEEP3D is defined by the following parameters. ITG,

JTG, KTG, and MM are the sizes of the three spatial dimensions and the angular dimension, respec-

tively; and NM is the number of flux & source angular moments, typically small. The parallel imple-

mentation described below has the following additional parameters. NPEi and NPEj are the number
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of processors across which the i and j dimensions are distributed. IT and JT are the size along the i

and j dimensions, respectively, for one processor (i.e., IT� ITG�NPEi and JT� JTG�NPE j). For

simplicity, let KT � KTG. MK and MMI are the size of a tile along the k spatial and angular dimen-

sions. KB and MMO give the number of tiles along the same two dimensions (i.e., KB� KTG�MK

and MMO� MM�MMI). Thus, each processor has KB�MMO tiles, each of size MK�MMI.

SWEEP3D is best parallelized via pipelining as follows. The i and j spatial dimensions are

block distributed. Rather than each processor waiting for all the inflows, computing all its cells, and

transmitting all its outflows, they only compute a subset of the planes in the k dimension—called k

planes—between communication steps, creating a pipeline. In addition, only a subset of the angles

per plane are computed at a time, useful in further adjusting the granularity of the pipeline [KBA92].

Figure 6.2 illustrates a pipeline parallel implementation of a SWEEP3D wavefront. Like Fig-

ure 6.1 this figure is a snapshot of the computation over a three-dimensional grid of cells. Unlike

Figure 6.1, the i and j dimensions of a 12� 12� 4 array (ITG � JTG � 12 and KTG � 4) are dis-

tributed across a 3� 3 processor grid (NPEi � NPE j � 3), so that each processor contains 43 cells

(IT� JT �KT � 4). Again, white cells have yet to be computed, black cells are most recently com-

puted, and gray cells have been computed in the past (lighter cells in the more distant past). Before

beginning work on the next k-plane, each processor sends partial results to its east and south neigh-

bors, forming a diagonal pipeline across the two-dimensional processor space. Here, we ignore the

angular dimension, but MK � 1 and KB� 4.

Figure 6.2 illustrates the potential for inter-sweep parallelism. Each sweep step—save the last—

is followed by another sweep typically in an orthogonal direction, permitting one sweep to start

before the previous finishes. For example, suppose that the northwest-to-southeast wavefront in

Figure 6.2 will be followed by another traveling from southwest-to-northeast. The southwest pro-

cessor will finish its contribution to the first sweep and begin the second, while the three southeast

processors are still working on the first. In addition, the code is able to exploit intra-tile parallelism

using compilers that recognize the appropriate directives and machines that are able to exploit very

fine-grain parallelism.

As a minor simplification, all codes considered here do not implement diffusion synthetic accel-

eration (DSA), and our example codes exclude the SWEEP3D “fix-up” step. This has no impact on

the parallel implications of the code nor its general structure.
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k j

i

Figure 6.2: Snapshot of SWEEP3D wavefront, illustrating data distribution and pipelining. Spatial
dimensions i and j are block distributed across a 3�3 processor grid. Dimension k is not distributed.
White cells have not yet been computed and black cells are most recently computed.

6.2 Implementations

6.2.1 Base Implementation: Message Passing Fortran 77

ASCI provides a Fortran 77 implementation of SWEEP3D. Message passing is achieved via a library

that maps to either MPI or PVM [Accb]. This code is carefully crafted to best realize the serial and

parallel performance capabilities of machines. Any shortcomings that exist in this code are due to

the implementation context, not the skills of its authors. It is implemented by 10 files, containing a

total of 1346 useful (i.e., non-comment and non-blank) lines of code. The main function, sweep(),

is 292 lines long.

Figure 6.3 summarizes the 292 line sweep() function in 86 lines. Although most of the code has

been replaced by descriptive comments, the overall structure remains. The core of the computation

appears in lines 33–49, which computes a single tile in the four-dimensional iteration space. A

recurrence is formed on arrays phijb and phikb and scalar phiir, which is eventually stored

in array phiib. Each of these arrays lacks a dimension for the dimension that gives rise to the
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Table 6.1: Arrays in Fortran SWEEP3D.

arrays size
hi, di, phi IT
hj, dj JT
hk, dk KT
w, mu, eta, tsi, wmu, weta, wtsi MM
sigt, pflux, srcx IT� JT�KT
pn MM�NM�8
phiib† JT�MK�MMI
phijb† IT�MK�MMI
phikb† IT� JT�MMI
src, flux IT� JT�KT�NM
sigs IT� JT�KT�2

† These arrays are bound by tile size rather than problem size.

recurrence. For example, phikb does not have an allocated k-dimension, so references to the array

induce a loop-carried dependence for the k loop. The three loops beginning at line 33 iterate over the

four-dimensional iteration space in such a way that one of the loops is parallel (i.e., each iteration is

independent), exposing intra-tile parallelism.

The outermost loops, beginning at lines 1 and 9, iterate over the batches of angles and k-planes

that form tiles. Aside from these loops, the code that precedes the core sets up the i, j and k inflows

used by the core. Based on a processors relative position, the inflows are either 0 or values received

from a neighboring processor, i.e., the neighbor’s outflow. Similarly, the code following the core

either sends the outflows to neighbors or performs a leakage calculation.

Table 6.1 gives the size on each processor of the important arrays in the Fortran implementation

of SWEEP3D. Many of the arrays are one-dimensional, three of the arrays are bound by tile size

rather than problem size (phiib, phijb, and phikb), and only three arrays represent all three

spatial dimensions (src, flux, and sigs), which are much larger than the angular dimension. In

summary, these arrays are space efficient. We will see why this is important when we examine the

A–ZPL implementation.
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1 DO mo = 1, mmo ! outer angles loop (batches of mmi angles)
2 do mi = 1, mmi ! K-inflows (k=k0 boundary)
3 do j = 1, jt
4 do i = 1, it
5 phikb(i,j,mi) = 0.0d+0
6 end do
7 end do
8 end do
9 DO kk = 1, kb ! outer k-planes loop (batches of mk-planes)

10 if (ew_rcv .ne. 0) then ! I-inflows for block (i=i0 boundary)
11 call rcv_real(ew_rcv, phiib, nib, ew_tag, info)
12 else
13 do mi = 1, mmi
14 do lk = 1, nk
15 do j = 1, jt
16 phiib(j,lk,mi) = 0.0d+0
17 end do
18 end do
19 end do
20 endif
21 if (ns_rcv .ne. 0) then ! J-inflows for block (j=j0 boundary)
22 call rcv_real(ns_rcv, phijb, njb, ns_tag, info)
23 else
24 do mi = 1, mmi
25 do lk = 1, nk
26 do i = 1, it
27 phijb(i,lk,mi) = 0.0d+0
28 end do
29 end do
30 end do
31 endif
32 ! compute 1 tile/block
33 DO idiag = 1, jt+nk-1+mmi-1 !JK-diagonals with MMI pipelined angles
34 ! DO PARALLEL
35 DO jkm = 1, ndiag
36 DO i = i0, i1, i2 ! I-line recursion: without flux fixup
37 ci = mu(m)*hi(i)
38 dl = ( sigt(i,j,k) + ci + cj + ck )
39 dl = 1.0 / dl
40 ql = phi(i) + ci*phiir + cj*phijb(i,lk,mi) + ck*phikb(i,j,mi)
41 phi(i) = ql * dl
42 phiir = 2.0d+0*phi(i) - phiir
43 phii(i) = phiir
44 phijb(i,lk,mi) = 2.0d+0*phi(i) - phijb(i,lk,mi)
45 phikb(i,j,mi) = 2.0d+0*phi(i) - phikb(i,j,mi)
46 END DO ! i
47 phiib(j,lk,mi) = phiir
48 END DO ! jkm
49 END DO ! idiag
50 if (ew_snd .ne. 0) then ! block I-outflows (i=i1 boundary)
51 call snd_real(ew_snd, phiib, nib, ew_tag, info)
52 else
53 leak = 0.0
54 do mi = 1, mmi
55 do lk = 1, nk
56 do j = 1, jt
57 leak = leak + wmu(m)*phiib(j,lk,mi)*dj(j)*dk(k)
58 end do
59 end do
60 end do
61 leakage(1+i3) = leakage(1+i3) + leak
62 endif
63 if (ns_snd .ne. 0) then ! block J-outflows (j=j1 boundary)
64 call snd_real(ns_snd, phijb, njb, ns_tag, info)
65 else
66 leak = 0.0
67 do mi = 1, mmi
68 do lk = 1, nk
69 do i = 1, it
70 leak = leak + weta(m)*phijb(i,lk,mi)*di(i)*dk(k)
71 end do
72 end do
73 end do
74 leakage(3+j3) = leakage(3+j3) + leak
75 endif
76 END DO ! kk
77 leak = 0.0 ! K-outflows (k=k1 boundary)
78 do mi = 1, mmi
79 do j = 1, jt
80 do i = 1, it
81 leak = leak + wtsi(m)*phikb(i,j,mi)*di(i)*dj(j)
82 end do
83 end do
84 end do
85 leakage(5+k3) = leakage(5+k3) + leak
86 END DO ! mo

Figure 6.3: Greatly simplified core of SWEEP3D in Fortran.
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Table 6.2: Arrays in A–ZPL SWEEP3D.

arrays declared size final size
ci, cj, ck, ti, tj, tk, fixed, done, dl, ql, phi MM�KT� JT� IT 1
hi, di IT IT
hj, dj JT JT
hk, dk KT KT
w, mu, eta, tsi, wmu, weta, wtsi MM MM
sigt, pflux, srcx KT� JT� IT KT� JT� IT
pn 8�MM�NM 8�MM�NM
phiib MM�KT� JT� IT MM�KT� JT
phijb MM�KT� JT� IT MM�KT� IT
phikb MM�KT� JT� IT MM� JT� IT
src, flux NM�KT� JT� IT NM�KT� JT� IT
sigs 2�KT� JT� IT 2�KT� JT� IT

6.2.2 A–ZPL Implementation

A computationally equivalent A–ZPL implementation has been built, using the ASCI message pass-

ing Fortran code as a model. The A–ZPL implementation (Figure 6.4) does not use message passing,

rather, pipelined parallelism is implicit in scan blocks and primed at references. In mirroring the

structure of the Fortran code, the A–ZPL code is implemented by 10 files, containing a total of 419

lines of useful code. The main function, sweep(), is 115 lines long.

Figure 6.4 summarizes the 115 line sweep() function in 24 lines. This figure also includes

array declarations. The core of the computation, including a scan block, is bound by lines 7 and 18.

Lines 3–5 compute the boundary inflows in each dimension, and lines 20–22 compute leakage based

on the corresponding boundary outflows. Note that the meaning of the dimensions of the arrays in

the A–ZPL is a transposition of those of the Fortran. This reflects the difference of column-major

versus row-major array allocation in the two languages.

Table 6.2 gives the size on each processor of the important arrays in the A–ZPL implementation

of SWEEP3D. Two sizes are given: (i) as declared by the programmer and (ii) the final size after

array contraction. The next section will discuss this data and compare it to that of the message

passing Fortran implementation.
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region BigR = [1..mm,0..n_k+1,0..n_j+1,0..n_i+1];
R = [1..mm,1..n_k,1..n_j,1..n_i];
Rm = [1..mm,* ,* ,* ];
Ri = [* ,* ,* ,1..n_i];
Rj = [* ,* ,1..n_j,* ];
Rk = [* ,1..n_k,* ,* ];
Rijk = [* ,1..n_k,1..n_j,1..n_i];

var ci, cj, ck, ti, tj,
tk, dl, ql, phi : [R] double;
hi, di : [Ri] double;
hj, dj : [Rj] double;
hk, dk : [Rk] double;
mu, eta, tsi,
w, wmu, weta, wtsi : [Rm] double;
Sigt, pflux, Srcx : [Rijk] double;
pn : array [1..8] of [Rm] array [1..nm] of double;
phiib, phijb, phikb : [BigR] double;
Src : [Rijk] array [1..nm] of double;
flux : [Rijk] array [1..nm] of double;
Sigs : [Rijk] array [1..2] of double;

1 [R] begin
2
3 [lasti of R] phiib := 0.0; -- boundary i inflow
4 [lastj of R] phijb := 0.0; -- boundary j inflow
5 [lastk of R] phikb := 0.0; -- boundary k inflow
6
7 ci := mu * hi;
8 cj := eta * hj;
9 ck := tsi * hk;

10 dl := 1.0 / (Sigt + ci + cj + ck);
11
12 scan
13 ql := phi + ci*phiib’@lasti + cj*phijb’@lastj + ck*phikb’@lastk;
14 phi := ql * dl;
15 phiib := 2.0*phi - phiib’@lasti;
16 phijb := 2.0*phi - phijb’@lastj;
17 phikb := 2.0*phi - phikb’@lastk;
18 end;
19
20 [lasti in R] leakage[1+i3] += wmu * phiib * dj * dk; -- final i outflow
21 [lastj in R] leakage[3+j3] += weta * phijb * di * dk; -- final j outflow
22 [lastk in R] leakage[5+k3] += wtsi * phikb * di * dj; -- final k outflow
23
24 end;

Figure 6.4: Core of SWEEP3D in A–ZPL.
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Recall that directions in A–ZPL are static; thus, the same code can not be used to compute all

eight wavefronts. Static directions are an important part of the A–ZPL design, so we are unwilling to

completely forsake them, but mechanisms that solve this problem via some form of polymorphism

and specialization are currently in design. In the interim, we have used the M4 macro package

to stamp out code for the eight wavefronts, buffering the programmer from code replication. The

macro expansion introduces a factor of eight code bloat, but the programmer need never see or

manipulate this intermediate code. Interestingly, even after this gratuitous code explosion, the final

A–ZPL code is still shorter than the message passing Fortran.

6.3 Discussion

This section considers a number of concerns that may impact the efficacy of the implementations

introduced in the previous section.

6.3.1 A–ZPL Concerns

In comparing the A–ZPL and Fortran implementations of SWEEP3D, a performance-minded pro-

grammer is likely to have three main concerns. First, array languages require the expansion of what

would otherwise be scalars to be full arrays (e.g., ci, cj, and ck). Second, the programmer has no

control over loop generation; can the compiler produce loop nests that compete with the carefully

constructed Fortran program? And third, and perhaps most importantly, is the compiler up to the

task of generating an effective pipelined parallel implementation from the given source program?

Scalar Expansion

The term scalar expansion, or scalar promotion, was first used to describe a technique (implemented

either by hand or in a compiler) in which scalar references in a loop are replaced by array references

in order to eliminate loop-carried data dependences on the scalar and enable the parallel execution

of the loop [Wol96]. Similarly, array language semantics require that arrays referenced together

must be conformable; thus, some scalar references must be expanded to arrays. Arrays ci, cj, ck,

ti, tj, tk, fixed, done, dl, and ql are examples of this for the A–ZPL code in Figure 6.4.
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Scalar expansion is a hindrance for a number of reasons. Most obviously, it wastes memory. In

this case, what would otherwise be a scalar is a full four-dimensional array. For a moderately sized

problem, this results in a factor of 10,000 increase in memory required for a single variable. Wasted

memory not only limits the size of problems that may be solved in a given memory size, it degrades

performance in two ways. First, array references to expanded arrays pollute the data cache and limit

its efficiency. And second, scalar values are more likely to be kept in machine registers which are

more quickly retrieved than even cached data in memory; this is a property of modern load-store

architectures.

There a two ways to address the memory inefficiency of scalar expansion. First, under certain

circumstances, a programmer may use a flood array. A flood array replicates a lower dimensional

structure along one or more dimensions to create an array that can be referenced as if it were a

higher dimensional structure. Flood arrays are used extensively in the A–ZPL implementation of

SWEEP3D. All the non-four-dimensional arrays according to the second column of Table 6.2 use

flood arrays. Arrays hi and di, for example, are referenced as if they were four-dimensional arrays

but they only represent a single vector along the i dimension. Flood arrays do not completely solve

the problem, because they can not be used in cases when the promoted dimensions do not represent

replicated data. For example, array ci contains on arbitrary value in each element. Array contraction

addresses this problem.

Array contraction is another line of defense against the memory inefficiency of scalar expansion.

Array contraction gathers loop nests together so that lower dimensional arrays can be used to hold

certain values. Because it is entirely the role of the compiler to generate loop nests from array

statements, it is the compiler’s sole responsibility to perform array contraction. Chapter 4 has shown

that the compiler is able to perform contraction to the degree that the programmer may ignore this

issue. The final column of Table 6.2 gives the array sizes after both full and partial array contraction

have been performed. The arrays in the first line are contracted to a scalar, and phiib, phijb, and

phikb have one dimension contracted.

Compare the final sizes of the arrays in Tables 6.1 and 6.2. The tables indicate that the arrays

in Fortran and A–ZPL are the same except for arrays phi, phiib, phijb, and phikb. The Fortran

array phi becomes a scalar in A–ZPL. We suspect that the Fortran code does not do the same in an

effort to exploit the idiosyncrasies of a particular Fortran compiler. The other three arrays are smaller
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in Fortran. Specifically, they are the size of a tile along the k and angular dimensions in Fortran,

while they are the size of each processors’ ownership in these dimensions in A-ZPL. Thus, the A–

ZPL implementation of SWEEP3D uses somewhat more memory for these three arrays. Section 6.4

will answer the question of whether this significantly impacts performance.

Another implication of scalar expansion is that it commonly results in redundant computation.

For example, array ck is a function of array tsi and hk, which are flooded in all but the angular

and k dimensions, respectively. Thus, ck redundantly computes values in the i and j dimensions.

The A–ZPL compiler optimizes this redundancy via loop-invariant code motion.

Loop Generation and Scalar Performance

In an array language, such as A–ZPL, the compiler is responsible for mapping the more abstract

array representation to a collection of semantically equivalent loop nests. The Fortran code in Fig-

ure 6.3 illustrates the potential complexity of these loops: large, imperfectly nested, and highly

optimized by the programmer. Unfortunately, a direct compilation of array statements generates a

single loop nest for each statement. This is not a winning strategy.

The statement fusion strategy described in Chapter 4 fully addresses these concerns. In fact, the

C code generated by the A–ZPL compiler differs from the Fortran code in only one minor way: the

global boundary initializations and the leakage calculations do not appear in the core loop. It is for

this reason that the A–ZPL arrays phiib, phijb, and phikb have a final size determined by the

problem size rather than the tile size, as in the Fortran.

An important practical concern arises from A–ZPL’s use of C as a target language. It is gen-

erally accepted that Fortran compilers produce higher performance code than does C for numerical

applications. This state of affairs exists for several related reasons: (i) Fortran compiler technology

is more mature than that of C, (ii) Fortran compilers are designed to optimize array accesses, a dom-

inant characteristic of numerical codes, (iii) C programs often contain pointer manipulations that

thwart analysis and optimization, and (iv) Fortran compilers often recognize particular program-

ming idioms, such as matrix-vector product, and replace this code with calls to highly optimized

BLAS routines. The A–ZPL compiler addresses this problem by performing a number of scalar

optimizations so as not to rely on the ability of the back-end C compiler to optimize array accesses.
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We will return to this issue when we examine performance data.

Parallel Implementation

Is the A–ZPL compiler up to the task of generating an effective parallel implementation from the

given source program? Can it generate pipelined code and exploit inter-sweep parallelism? Can it

exploit intra-tile parallelism like the Fortran code? Previous chapters and Section 6.4 answer the

first question. The answer to the second question is, “yes.” The processors of an A–ZPL application

are only loosely synchronized; thus, one can start the next sweep before others have finished the

previous one. As for the third question, the answer is, “no.” The current A–ZPL compiler does not

attempt to exploit this kind of multi-resolution parallelism.

6.3.2 Message Passing Fortran Concerns

The message passing Fortran implementation of SWEEP3D was designed to be fast, and it has been

evaluated on several machines and demonstrated to achieve this goal [CKPN00, LHZ98, SSV99].

Thus, we present only a few performance concerns. Instead, we focus on the practicality of using

message passing Fortran of a similar system for implementing codes like this.

Portable Performance

Any message passing implementation is susceptible to problems of portability, for it fixes a par-

ticular communication mechanism: message passing. Machines that support other communication

mechanisms may be underutilized by message passing. For example, the Cray T3E supports low

latency one-sided communication, so programs customized for message passing do not fully exploit

the machine. In the specific case of SWEEP3D, communication represents a small portion of the

total execution time, and we expect that this issue of portability will be minor. But not all message

passing applications are so lucky.

Complexity

We now turn to the issue of practicality. The reader is no doubt struck by the disparity in apparent

complexity of the Fortran and A–ZPL implementations of SWEEP3D, highlighted by the differ-
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ence in length, 292 versus 115 lines. The source of the problem comes from the fact that Fortran

does not provide abstractions for parallel programming. This is not a deficiency of Fortran—a se-

rial language—rather, it is a deficiency of using a serial language to write parallel programs. The

program becomes unnecessarily mired in the implementation details of simple abstract ideas, in this

case a pipelined wavefront computation. Similarly, before high-level serial programming languages,

programmers were burdened with explicitly managing a call stack.

Unnecessary asymmetry is an example of how complexity limits the practicality of this code.

Specifically, exactly the same computation takes place in the three spatial dimensions, inducing

exactly the same data dependences. Despite this, the message passing Fortran code treats the non-

distributed k dimension much differently than the distributed dimensions. Thus, a conceptually

small change, such as pipelining in the k and j dimensions (rather than j and i) requires a nearly

total rewrite of the code. Inflexible codes are less likely to remain useful in the future. The issue

of tile size selection is another problem with the message passing code. The task is left entirely

to the programmer, for the compiler has no concept of the communication/computation tradeoff

that guides tile size selection in pipelined codes. The programmer can either experimentally find

the optimal tile size, but this limits the future value of the code, for changes to the code or the

hardware on which it runs requires that new tile sizes be calculated. Alternatively, the programmer

can implement an automatic tile size selection algorithm [LJ99], but these codes must be integrated

into the core computation, further obscuring its logic.

6.3.3 Comparison

The next section will answer the question of how well the A–ZPL compiler addresses the perfor-

mance concerns cited above, so here we consider the issue of usability. The A–ZPL implementation

scores well in every regard that the message passing Fortran code falls short: portability, complexity,

asymmetry, and tile size selection.

While the message passing code is bound to a single, fixed communication paradigm (in this

case, message passing), the A–ZPL code is not. A–ZPL provides high-level language abstractions

that represent the common forms of abstract data motion, shielding the compiler from machine-

specific implementation details. The A–ZPL compiler and run-time system are free to exploit what-
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ever paradigm best utilizes each machine[CCS98]. As a result, A–ZPL programs are more portable

than fixed paradigm programs such as the message passing SWEEP3D.

A–ZPL abstractions not only enhance portability, they reduce complexity and programmer ef-

fort. The code fragments in Figures 6.3 and 6.4 clearly illustrate this point. A programmer familiar

with both languages will certainly find the A–ZPL easier to write and understand than the message

passing. Line counts emphasize this point: 292 for the message passing versus 115 for the A–ZPL.

Programmers need not be concerned with the details of implementing mundane and well understood

mechanisms (in this case, pipelined parallelism), for the compiler is well equipped to do it for them.

This reduction in complexity enhances maintainability and, with portability, prolongs the life of

software, drastically reducing its cost.

Asymmetries arise in message passing codes because the programmer customizes a program to a

particular goal on a particular machine. For example, the message passing SWEEP3D code assumes

that only the i and j dimensions of the problem are distributed. Perhaps some machines would

benefit from a different distribution, but it is impractical to even experiment with alternatives because

this would require a complete rewrite. This is trivial when using A–ZPL, because the compiler is

responsible for the tedious details of implementing the language’s abstractions. Programmers may

attempt to avoid these asymmetries by writing their codes in as general a way as possible, but this

kind of generality usually comes at the expense of added complexity.

We have already enumerated the problems concerning tile size selection for a message passing

implementation of SWEEP3D. A–ZPL does not suffer from these problems because the compiler

has a complete view of the pipelining process; thus, it is well equipped to automatically select an

appropriate tile size using one of the existing techniques [LJ99].

6.4 Performance

We evaluate the performance of the message passing Fortran and A–ZPL implementations of

SWEEP3D on the Cray T3E and the IBM SP. Before we examine final performance, we first con-

sider the issue of tile size selection.
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6.4.1 Tile Size

Tile size balances the tradeoff between parallelism and communication, thus tile size selection is an

important factor in determining performance of pipelined parallel wavefronts. We have argued that

the high-level representation of A–ZPL enables the compiler to automatically select the tile size, but

we have not yet implemented this. For this reason, we will experimentally find the optimal tile size

for both the Fortran and A–ZPL codes.

Adjustment to the tile size (i.e., variation of MK and MMI) balance the tradeoff between com-

munication and computation in the pipeline. This raises the question of how sensitive performance

is to tile size. For both the message passing Fortran code and the A–ZPL, we found the optimal tile

size for each problem size and machine by exhaustively searching the space of all possible tile sizes.

Figure 6.5 contains a representative of the data used to determine optimal tiles. This data is for a

50�50�50�6 problem size and running on four Cray T3E processors.

Both the Fortran and A–ZPL figures clearly demonstrate the communication/computation trade-

off. First, consider the Fortran case in Figure 6.5(a). It is clear that the smallest execution time for

a particular value of MMI is when MMI�MK � 6. An increase or decrease in MK from this point

leads to a corresponding increase in execution time from lost parallelism or increased communica-

tion overhead, respectively. The A–ZPL data in Figure 6.5(b) is analogous, though somewhat more

subtle.

Furthermore, the Fortran times exhibit a general trend of decreasing as MMI increases. This

behavior arises because an increase of MMI implies a reduction of the tile size along the angular

dimension, resulting in the outer loop iterating fewer times. When MMI � 6, the outer loop iterates

over only a single tile, thus minimizing the overhead associated with this loop. The A–ZPL code

suffers less from this problem because it has lower overhead associated with this loop as a result of

the fact that the initialization of phikb appears outside the main loop. Although this requires that

phikb be larger than it would otherwise be, it reduces sensitivity to MMI. In addition, the A–ZPL

code optimizes array references across all of the code (tiling and inner loops), whereas it is likely

the Fortran is only able to optimize across the inner loops.

In summary, the high-level representation of A–ZPL enables more efficient loop generation, thus

reducing the sensitivity of performance to tile size.
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Figure 6.5: Impact of tile size on performance for SWEEP3D implemented in (a) message passing
Fortran and (b) A–ZPL. The x-axis represents variations in the tile size along the angular dimension
(MMI) and each bar represents a variation in the tile size along the k spatial dimension (MK). This
data is for a 50�50�50�6 problem size and running on four Cray T3E processors.

6.4.2 Running Time

In this section we examine the ultimate performance of Fortran and A–ZPL implementations of

SWEEP3D. Each reported execution time is the smallest of all tile size configurations, and for each

tile configuration, each time is the smallest of at least three identical trials. Variations were minimal,

so we do not report them.

Figure 6.6 presents execution-time data on the Cray T3E and IBM SP for three problem sizes.

The white and black bars represent Fortran and A–ZPL performance, respectively. Execution time
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is scaled to that of Fortran. Thus a bar less than 1.0 is faster than Fortran. Because the Cray For-

tran compiler includes a library substitution optimization, we include a third gray bar, representing

Fortran performance when library substitution is disabled. Library substitution performs pattern

matching to replace particular code idioms with function calls to highly optimized libraries (in this

case, the level 2 BLAS SGEMV and SGER). Thus the white bar represents Fortran performance with

library substitution and the gray bar represents performance without.

First, we examine the two Cray T3E Fortran bars. This data clearly shows that the benefit of

library substitution is a function of problem size. For small problems, the overhead of calling into a

library swamps the benefit of the library. This fact manifests itself it two ways: (i) the Fortran code

without library substitution becomes relatively worse as the problem size grows, and (ii) the Fortran

without library substitution becomes relatively better as the number of processors increases (i.e., the

amount of data per processor decreases). Furthermore, neither bar is consistently better than the

other. Part of the reason for this is that the libraries solve a two-dimensional problem that represents

a portion of a four-dimensional problem. As a result, the two-dimensional problems are unusually

small. In fact, the largest problem size in Figure 6.6 is a very large problem, yet library substitution

shows minimal benefit. For this reason, this code will have better general behavior without library

substitution.

Next, we consider the A–ZPL data. Because tiling is not necessary for a single processor, all

the codes make identical use of memory in this case, and they have comparable cache behavior. For

a single processor, A–ZPL demonstrates superior scalar performance. Again, this arises from opti-

mizing entire loop nests rather than just the inner loops. Now we examine variations in the number

of processors. As the number of processors increases, the amount of data per processor decreases,

resulting in two opposing effects. On one hand, less data results in greater loop overhead, and the

A–ZPL has relatively greater loop overhead than the Fortran because entire loops are optimized.

This behavior is most clear in the smallest problem size. On the other hand, less data means that the

memory (and cache) deficits of the A–ZPL decrease. Thus, as the number of processors increases

for the largest problem size, the relative performance of the A–ZPL improves. The medium-sized

problem shows these two factors competing. The relative A–ZPL performance decreases from four

to 16 processors and increases from 16 to 64. Another general trend is that the relative A–ZPL per-

formance decreases as the problem size grows. Again, this comes from its poorer use of memory.
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Figure 6.6: Scaled execution time of A–ZPL versus message passing Fortran on the (a) Cray T3E
and (b) IBM SP. The label under each graph indicates the problem size. Note that 150�150�150�
5 problems are too large to run on a single processor of the T3E, and it can not be run at all on our
SP configuration.
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In summary, it is clear that despite subtle differences, the performance of the A–ZPL codes

competes with—and sometimes outperforms—the highly optimized Fortran codes. The goal was to

compete, but it turns out that the high-level representation can actually result in superior code.

6.5 Summary

We have evaluated several representations of the SWEEP3D benchmark. We find that an automatic

parallelization implementation does not result in consistently efficient code, for different compilers

use different optimization strategies and the optimization is brittle.

The message passing and A–ZPL implementation both perform well. The message passing code

requires that the programmer manage every detail of the implementation, resulting in a large code

that obscures the fundamental computation that it performs. Assembly language programs are the

serial analog of this situation, i.e., the message passing programmer must manage issues analogous

to register allocation and instruction scheduling, tasks best left to a compiler.

The A–ZPL code, like all A–ZPL programs, does not require the programmer to manage imple-

mentation details. Instead the language defines abstractions that permit the programmer to reason

about the primary performance implications (e.g., parallelism) of a code, and the compiler manages

the details of mapping these abstractions to a particular machine. The programmer is well aware of

the parallelism implicit in array operations and the pipelined parallelism arising from the primed at

references, but it is the compiler’s responsibility to manage the interprocessor communication, the

tiling to set up the pipelining, and the array contraction necessary for efficient use of memory and

the data cache. The result is a program that has portable performance and is easy to develop and

maintain.



100

Chapter 7

CONCLUSIONS

7.1 Summary and Contributions

Despite the existence of powerful parallel machines, the promise of their peak performance and

enthusiasm for their use, exploiting parallelism is still impractical for most users. This is because

performance typically comes at the expense of portability (i.e., performance portability), usability,

or both; and most potential users are unwilling or unable to accept this trade-off. Until parallel

programming systems perform well, are portable, and usable, parallelism will be of little value to

most users.

We address this problem with the integrative design of language-level abstractions, compiler

technology, and predictive performance models. Roughly speaking, language-level abstractions

address the usability goal of simplification. With well designed or chosen abstractions, the pro-

grammer is presented with a computational view that hides complex details. It is then the role of the

compiler to map these abstractions to a machine, specializing them to a particular architecture. A

tension between performance and usability persists in the development of abstractions and compiler

technology; thus, their design must be guided by a portable predictive performance model.

Just as fundamental parallel properties are made apparent to programmers, secondary details

must be abstracted in support of usability. Tedious, yet tractable, details of parallel programming

are relegated to the compiler. Thus, a programmer and compiler have specific and distinct roles. We

call the division of labor between programmer and compiler programmer-compiler separation, for

it determines the responsibilities of each entity.

� The programmer is responsible for abstract parallel and sequential algorithmic issues.

� The compiler manages the tractable elements of mapping abstract representations to a partic-
ular machine.

The design of the Advanced–ZPL (A–ZPL) parallel programming language was guided by this
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programmer-compiler separation. The A–ZPL language abstractions permit programmers to reason

about the parallel and locality implications of their code, for the abstractions are subject to a portable

predictive performance model. At the same time they are sufficiently abstract and intuitive that the

language is easy to use as compared to the alternatives.

We have examined portions of the A–ZPL language and its compiler and evaluate them in the

light of the above programmer-compiler separation. We have considered elements of the language

that demonstrate the role of programmer-compiler separation. On one hand, we have examined

a complex task that is entirely managed by the compiler: the generation of loop nest from array

statements. On the other hand, we have considered a circumstance where new language abstractions

dramatically improve the efficacy of the language: support for pipelining wavefront computations.

Loop generation is a performance-critical aspect of array language compilation. Effective loop

generation in A–ZPL consists of two components, statement fusion and array contraction. Statement

fusion is analogous to loop fusion except that it is performed by the compiler on array statements

before they have been converted to scalar loop nests. Array contraction is a program transformation

enabled by statement fusion that permits a single scalar value to be used in place of an array. To-

gether, these optimizations dramatically improve data cache behavior and performance (frequently

by 25% and in some cases by a factor of 4) in most programs. In addition, array contraction reduces

memory consumption, permitting larger problems to be solved in a fixed-sized memory. We argue

that the task of loop generation is eminently tractable for the compiler, and our experiments support

this claim.

Wavefront computations occur frequently, for example in solvers and dynamic programming

codes. We show fully automatic approaches to parallelizing such code are impractical. We describe

the design and implementation of a general language abstraction that consistently admits efficient

pipelined parallel implementations of wavefront computations. We show that this approach consis-

tently performs better than the alternatives.

This dissertation is an in-depth study of the development of language-level abstractions and

compiler technology guided by portable predictive performance models. All models are well de-

fined, and all abstractions and compiler techniques are implemented and evaluated in the context of

a complete practical programming language.

The work in this dissertation makes the following contributions.
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� It illustrates programmer-compiler separation via the A–ZPL parallel programming language.

� It motivates and justifies particular A–ZPL language design decisions in support of
programmer-compiler separation considerations.

� It presents and experimentally evaluates unique techniques for array contraction.

� It introduces a novel language abstraction for representing wavefront computations for
pipelined parallel execution.

� It quantitatively and qualitatively evaluates this new abstraction via kernels computations and
large applications.

� And it describes core elements of the A–ZPL compilation process, including efficient loop
generation for array statements.

7.2 Future Work

The work described in this dissertation is mature and fully implemented. Nevertheless, there are

many avenues for future research in the short-, medium-, and long-term.

In the short-term, details of pipelining warrant additional study. For example, we must imple-

ment a scheme for dynamic tile size selection. Will existing approaches suffice, or can we exploit

the static character of A–ZPL programs? Furthermore, tile size is not the only parameter that may

be customized for particular machines. Specialization of other parameters, such as communication

mechanism, deserves further study. In addition, we will study the implications of skewing the itera-

tion space to improve parallelism. Finally, we have assumed that all array dimensions are potentially

distributed, limiting the variety of wavefronts that may be practically implemented. For this reason,

we will consider mechanisms by which some dimensions are statically identified as non-distributed.

In the medium-term, the A–ZPL language must be completed, resulting in a general purpose

parallel programming language. We seek a unified representation that brings together task/data

parallelism, control/data irregularity, computation/data distribution, and load balancing. This is a

tall order, but we believe our success in the data parallel domain will serve us well. We may begin

with the study of the generalization of pipelining moving us closer to task parallelism. We believe

the A–ZPL region, or an analogous structure, will serve as the tool for both manipulating parallelism

and reasoning about parallel performance, as in A–ZPL. If the completed version of A–ZPL does,

in fact, provide performance, usability, and portability, we will explore its use as a portable parallel
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intermediate language. Such a system could encourage the development of even higher level parallel

programming systems.

Another medium-term project entails using the A–ZPL representation in other parallel domains.

For example, most modern processors provide fine-grain parallel operations for multi-media appli-

cations. Currently, it is not clear how programs should be written to exploit these hardware features.

We believe that a less restricted form of A–ZPL would address this problem. Perhaps we will in-

vestigate the augmentation of a popular language like C++ or Java with A–ZPL abstractions, such

as regions and array operators.

In the long-term, we would like to do language design with programmer-compiler separation in

other domains. For example, consider low-power devices. Naturally, software will implement the

bulk of the functionality of such devices, but the power consumption characteristics of codes are not

manifest in the source program. Programmer-compiler separation guided by a power performance

model would be a great asset in creating development tools.
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